Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.

Liangcheng Du, Jens Lykkesfeldt, Carl Erik Olsen, Barbara Ann Halkier

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

Original languageEnglish (US)
Pages (from-to)12505-12509
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume92
Issue number26
DOIs
StatePublished - Dec 19 1995

Fingerprint

Sinapis
Glucosinolates
Oximes
Seedlings
Cytochrome P-450 Enzyme System
Enzymes
Amino Acids
Tyrosine
Carbon Monoxide
NADP
Documentation
Ascorbic Acid
Buffers
jasmonic acid
In Vitro Techniques
Proteins

ASJC Scopus subject areas

  • General

Cite this

@article{be8ae5901e1240a1b07f1ef4b4361f04,
title = "Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.",
abstract = "An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.",
author = "Liangcheng Du and Jens Lykkesfeldt and Olsen, {Carl Erik} and Halkier, {Barbara Ann}",
year = "1995",
month = "12",
day = "19",
doi = "10.1073/pnas.92.26.12505",
language = "English (US)",
volume = "92",
pages = "12505--12509",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "26",

}

TY - JOUR

T1 - Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.

AU - Du, Liangcheng

AU - Lykkesfeldt, Jens

AU - Olsen, Carl Erik

AU - Halkier, Barbara Ann

PY - 1995/12/19

Y1 - 1995/12/19

N2 - An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

AB - An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 μM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been the subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

UR - http://www.scopus.com/inward/record.url?scp=0029556989&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029556989&partnerID=8YFLogxK

U2 - 10.1073/pnas.92.26.12505

DO - 10.1073/pnas.92.26.12505

M3 - Article

VL - 92

SP - 12505

EP - 12509

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 26

ER -