Interferon gamma enhances proteasome activity in recombinant Hep G2 cells that express cytochrome P4502E1: Modulation by ethanol

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

We tested the influence of IFNγ on proteasome activity in parental Hep G2 cells that do not metabolize ethanol, as well as in recombinant Hep G2-derived cells that express either or both alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1). IFNγ treatment increased proteasome activity in VL-17A (ADH+, CYP2E1+) and E-47 (CYP2E1+) cells, but not in Hep G2, VI-R2 (parental cells with empty vectors) or in VA-13 (ADH+) cells. Proteasome activation by IFNγ correlated positively with the level of CYP2E1 activity. Treatment of VL-17A cells with agents that inhibit CYP2E1 or the inducible nitric oxide synthase (iNOS) or that prevent the formation of peroxynitrite also blocked proteasome activation by IFNγ, indicating that the proteasome may be directly activated by products of CYP2E1 and iNOS catalysis. While IFNγ treatment increased proteasome activity, it also decreased CYP2E1 activity. Both effects were mediated via the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) pathway, as both were blocked by the JAK2 inhibitor, tyrphostin AG 490. Ethanol treatment of VL-17A cells also caused a similar blockage of these same IFNγ-mediated effects, by inhibiting STAT1 phosphorylation. This inhibition was largely due to ethanol metabolism, as 4-methylpyrazole, an ethanol metabolism inhibitor, restored IFNγ-mediated STAT1 phosphorylation in ethanol-treated cells. Our results lead us to propose that IFNγ initiates signal transduction, which alters the activities of CYP2E1 and iNOS, thereby producing reactive oxygen species. One of these oxidants, possibly peroxynitrite, may be directly involved in proteasome activation. Ethanol metabolism by VL-17A cells suppresses IFNγ-mediated induction of proteasome activity, in part, by preventing STAT1 phosphorylation.

Original languageEnglish (US)
Pages (from-to)697-710
Number of pages14
JournalBiochemical Pharmacology
Volume66
Issue number5
DOIs
StatePublished - Sep 1 2003

Fingerprint

Hep G2 Cells
Proteasome Endopeptidase Complex
Cytochromes
Interferon-gamma
Ethanol
Modulation
Phosphorylation
Alcohol Dehydrogenase
Nitric Oxide Synthase Type II
Metabolism
Peroxynitrous Acid
Chemical activation
STAT1 Transcription Factor
Janus Kinases
Enzyme inhibition
Signal transduction
Catalysis
Oxidants
Byproducts
Reactive Oxygen Species

Keywords

  • Ethanol metabolism
  • Interferon gamma
  • Proteasome
  • STAT1
  • Signal transduction

ASJC Scopus subject areas

  • Biochemistry
  • Pharmacology

Cite this

@article{c6ecb971ac62467eaaa54395b115e053,
title = "Interferon gamma enhances proteasome activity in recombinant Hep G2 cells that express cytochrome P4502E1: Modulation by ethanol",
abstract = "We tested the influence of IFNγ on proteasome activity in parental Hep G2 cells that do not metabolize ethanol, as well as in recombinant Hep G2-derived cells that express either or both alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1). IFNγ treatment increased proteasome activity in VL-17A (ADH+, CYP2E1+) and E-47 (CYP2E1+) cells, but not in Hep G2, VI-R2 (parental cells with empty vectors) or in VA-13 (ADH+) cells. Proteasome activation by IFNγ correlated positively with the level of CYP2E1 activity. Treatment of VL-17A cells with agents that inhibit CYP2E1 or the inducible nitric oxide synthase (iNOS) or that prevent the formation of peroxynitrite also blocked proteasome activation by IFNγ, indicating that the proteasome may be directly activated by products of CYP2E1 and iNOS catalysis. While IFNγ treatment increased proteasome activity, it also decreased CYP2E1 activity. Both effects were mediated via the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) pathway, as both were blocked by the JAK2 inhibitor, tyrphostin AG 490. Ethanol treatment of VL-17A cells also caused a similar blockage of these same IFNγ-mediated effects, by inhibiting STAT1 phosphorylation. This inhibition was largely due to ethanol metabolism, as 4-methylpyrazole, an ethanol metabolism inhibitor, restored IFNγ-mediated STAT1 phosphorylation in ethanol-treated cells. Our results lead us to propose that IFNγ initiates signal transduction, which alters the activities of CYP2E1 and iNOS, thereby producing reactive oxygen species. One of these oxidants, possibly peroxynitrite, may be directly involved in proteasome activation. Ethanol metabolism by VL-17A cells suppresses IFNγ-mediated induction of proteasome activity, in part, by preventing STAT1 phosphorylation.",
keywords = "Ethanol metabolism, Interferon gamma, Proteasome, STAT1, Signal transduction",
author = "Osna, {Natalia A} and Clemens, {Dahn L} and Terrence Donohue",
year = "2003",
month = "9",
day = "1",
doi = "10.1016/S0006-2952(03)00252-1",
language = "English (US)",
volume = "66",
pages = "697--710",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier Inc.",
number = "5",

}

TY - JOUR

T1 - Interferon gamma enhances proteasome activity in recombinant Hep G2 cells that express cytochrome P4502E1

T2 - Modulation by ethanol

AU - Osna, Natalia A

AU - Clemens, Dahn L

AU - Donohue, Terrence

PY - 2003/9/1

Y1 - 2003/9/1

N2 - We tested the influence of IFNγ on proteasome activity in parental Hep G2 cells that do not metabolize ethanol, as well as in recombinant Hep G2-derived cells that express either or both alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1). IFNγ treatment increased proteasome activity in VL-17A (ADH+, CYP2E1+) and E-47 (CYP2E1+) cells, but not in Hep G2, VI-R2 (parental cells with empty vectors) or in VA-13 (ADH+) cells. Proteasome activation by IFNγ correlated positively with the level of CYP2E1 activity. Treatment of VL-17A cells with agents that inhibit CYP2E1 or the inducible nitric oxide synthase (iNOS) or that prevent the formation of peroxynitrite also blocked proteasome activation by IFNγ, indicating that the proteasome may be directly activated by products of CYP2E1 and iNOS catalysis. While IFNγ treatment increased proteasome activity, it also decreased CYP2E1 activity. Both effects were mediated via the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) pathway, as both were blocked by the JAK2 inhibitor, tyrphostin AG 490. Ethanol treatment of VL-17A cells also caused a similar blockage of these same IFNγ-mediated effects, by inhibiting STAT1 phosphorylation. This inhibition was largely due to ethanol metabolism, as 4-methylpyrazole, an ethanol metabolism inhibitor, restored IFNγ-mediated STAT1 phosphorylation in ethanol-treated cells. Our results lead us to propose that IFNγ initiates signal transduction, which alters the activities of CYP2E1 and iNOS, thereby producing reactive oxygen species. One of these oxidants, possibly peroxynitrite, may be directly involved in proteasome activation. Ethanol metabolism by VL-17A cells suppresses IFNγ-mediated induction of proteasome activity, in part, by preventing STAT1 phosphorylation.

AB - We tested the influence of IFNγ on proteasome activity in parental Hep G2 cells that do not metabolize ethanol, as well as in recombinant Hep G2-derived cells that express either or both alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1). IFNγ treatment increased proteasome activity in VL-17A (ADH+, CYP2E1+) and E-47 (CYP2E1+) cells, but not in Hep G2, VI-R2 (parental cells with empty vectors) or in VA-13 (ADH+) cells. Proteasome activation by IFNγ correlated positively with the level of CYP2E1 activity. Treatment of VL-17A cells with agents that inhibit CYP2E1 or the inducible nitric oxide synthase (iNOS) or that prevent the formation of peroxynitrite also blocked proteasome activation by IFNγ, indicating that the proteasome may be directly activated by products of CYP2E1 and iNOS catalysis. While IFNγ treatment increased proteasome activity, it also decreased CYP2E1 activity. Both effects were mediated via the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) pathway, as both were blocked by the JAK2 inhibitor, tyrphostin AG 490. Ethanol treatment of VL-17A cells also caused a similar blockage of these same IFNγ-mediated effects, by inhibiting STAT1 phosphorylation. This inhibition was largely due to ethanol metabolism, as 4-methylpyrazole, an ethanol metabolism inhibitor, restored IFNγ-mediated STAT1 phosphorylation in ethanol-treated cells. Our results lead us to propose that IFNγ initiates signal transduction, which alters the activities of CYP2E1 and iNOS, thereby producing reactive oxygen species. One of these oxidants, possibly peroxynitrite, may be directly involved in proteasome activation. Ethanol metabolism by VL-17A cells suppresses IFNγ-mediated induction of proteasome activity, in part, by preventing STAT1 phosphorylation.

KW - Ethanol metabolism

KW - Interferon gamma

KW - Proteasome

KW - STAT1

KW - Signal transduction

UR - http://www.scopus.com/inward/record.url?scp=0041930639&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0041930639&partnerID=8YFLogxK

U2 - 10.1016/S0006-2952(03)00252-1

DO - 10.1016/S0006-2952(03)00252-1

M3 - Article

C2 - 12948850

AN - SCOPUS:0041930639

VL - 66

SP - 697

EP - 710

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

IS - 5

ER -