Induction of an antigen-specific CTL response by a conformationally biased agonist of human C5a anaphylatoxin as a molecular adjuvant

J. Terry Ulrich, Witold Cieplak, Natalii J. Paczkowski, Stephen M. Taylor, Sam D. Sanderson

Research output: Contribution to journalArticle

32 Scopus citations


A conformationally biased decapeptide agonist of human C5a anaphylatoxin (YSFKPMPLaR) was used as a molecular adjuvant in stimulating an Ag-specific CTL response against murine P815S target cells expressing an L(d)-restricted CTL epitope of the hepatitis B surface Ag (HBsAg). Groups of BALB/c mice (H- 2(d)) were immunized with aqueous solutions of the HBsAg CTL epitopes (IPQSLDSWWTSL and IPQSLDSWWTSLRR); the C5a agonist (YSFKPMPLaR); the C5a agonist and HBsAg CTL epitopes admixed (IPQSLDSWWTSL and IPQSLDSWWTSLRR + YSFKPMPLaR); the C5a-active, HBsAg CTL epitope-C5a agonist constructs (IPQSLDSWWTSLYSFKPMPLaR, IPQSLDSWWTSLRRYSFKPMPLaR, and IPQSLDSWWTSLRVRRYSFPMPLaR); a C5a-inactive, reverse-moiety construct (YSFKPMPLaRRRIPQSLDSWWTSL); and a C5a-attenuated, carboxyl-terminal-blocked construct (IPQSLDSWWTSLRRYSFKPMPLaRG). Ag-specific CD8+ CTL responses were observed after the secondary boost in the absence of any added adjuvant only in mice that were immunized with C5a-active constructs, IPQSLDSWWTSLRRYSFKPMPLaR and IPQSLDSWWTSLRVRRYSFKPMPLaR. These two C5a-active immunogens contained potential subtilisin-sensitive linker sequences between the HBsAg CTL epitope and the C5a agonist; i.e., a double-Arg (RR) and a furin protease sensitive sequence (RVRR). The introduction of these potentially cleavable sequences may be a method of increasing the likelihood of liberating the CTL epitope from the C5a agonist by intracellular proteases, thereby facilitating entry of the epitope into Ag-processing pathways via an exogenous route.

Original languageEnglish (US)
Pages (from-to)5492-5498
Number of pages7
JournalJournal of Immunology
Issue number10
Publication statusPublished - May 15 2000


ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Cite this