Improved measurement of dibenzo[a,l]pyrene-induced abasic sites by the aldehyde-reactive probe assay

Dhrubajyoti Chakravarti, Alaa F. Badawi, Divya Venugopal, Jane L Meza, Lisa Z. Crandall, Eleanor G Rogan, Ercole Cavalieri

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Dibenzo[a,l]pyrene (DB[a,l]P) induces abundant amounts of depurinating adducts that spontaneously dissociate to form abasic sites in DNA. However, several previous studies that used the aldehyde-reactive probe (ARP) assay, could not verify abasic site formation by DB[a,l]P. Therefore, we examined whether a modification of the ARP assay would allow greater quantification of abasic sites. A previous study indicated that the abasic site quantification is improved by letting ARP trap the nascent abasic sites in cells, before extracting DNA for the assay. To test whether the addition of ARP to the DB[a,l]P-DNA adduct-forming reaction would improve abasic site quantification, we treated calf thymus DNA (0.625 mg/mL) with DB[a,l]P (80 μM) and 3-methylcholanthrene-treated rat liver microsomes with or without ARP (3 mM). The inclusion of ARP in the adduct-forming reaction resulted in significantly greater detection of abasic sites (62 lesions/106 bp versus 3.7 lesions/106 bp). DB[a,l]P also induces DNA strand breaks. The strand breaks may occur at abasic sites and by other mechanisms, such as oxidative damage. ARP/O-methoxyamine-abasic site conjugates are refractory to strand breakage, however, ARP or O-methoxyamine (3-10 mM) could only partially protect DB[a,l]P-induced DNA degradation, presumably by protecting the abasic sites, but not the other strand breaks. These results suggest that if DNA strand breakages occur at the abasic sites or at bases flanking them, and the fragments are lost during DNA extraction, abasic site estimation could be compromised. To obtain an independent line of evidence for abasic site formation in DB[a,l]P-treated cells, mouse Mβ16 fibroblasts were treated with DB[a,l]P and O-methoxyamine. O-Methoxyamine is known to potentiate cytotoxicity of abasic site-inducing chemicals by forming abasic site conjugates, which partially inhibits their repair. O-Methoxyamine was found to increase DB[a,l]P cytotoxicity in these cells, supporting the idea that DB[a,l]P formed abasic sites. In summary, the inclusion of ARP in the DB[a,l]P-DNA adduct-forming reaction traps and protects the nascent abasic sites, allowing an improved quantification of abasic sites.

Original languageEnglish (US)
Pages (from-to)158-165
Number of pages8
JournalMutation Research - Genetic Toxicology and Environmental Mutagenesis
Volume588
Issue number2
DOIs
StatePublished - Dec 30 2005

Fingerprint

DNA
DNA Adducts
dibenzo(a,l)pyrene
O-(biotinylcarbazoylmethyl)hydroxylamine
DNA Breaks
Methylcholanthrene
Liver Microsomes
Fibroblasts
methoxyamine
calf thymus DNA

Keywords

  • Abasic sites
  • Aldehyde-reactive probe assay
  • Dibenzo[a,l]pyrene

ASJC Scopus subject areas

  • Genetics
  • Health, Toxicology and Mutagenesis

Cite this

Improved measurement of dibenzo[a,l]pyrene-induced abasic sites by the aldehyde-reactive probe assay. / Chakravarti, Dhrubajyoti; Badawi, Alaa F.; Venugopal, Divya; Meza, Jane L; Crandall, Lisa Z.; Rogan, Eleanor G; Cavalieri, Ercole.

In: Mutation Research - Genetic Toxicology and Environmental Mutagenesis, Vol. 588, No. 2, 30.12.2005, p. 158-165.

Research output: Contribution to journalArticle

@article{645cc907614b422b950d304748c74da0,
title = "Improved measurement of dibenzo[a,l]pyrene-induced abasic sites by the aldehyde-reactive probe assay",
abstract = "Dibenzo[a,l]pyrene (DB[a,l]P) induces abundant amounts of depurinating adducts that spontaneously dissociate to form abasic sites in DNA. However, several previous studies that used the aldehyde-reactive probe (ARP) assay, could not verify abasic site formation by DB[a,l]P. Therefore, we examined whether a modification of the ARP assay would allow greater quantification of abasic sites. A previous study indicated that the abasic site quantification is improved by letting ARP trap the nascent abasic sites in cells, before extracting DNA for the assay. To test whether the addition of ARP to the DB[a,l]P-DNA adduct-forming reaction would improve abasic site quantification, we treated calf thymus DNA (0.625 mg/mL) with DB[a,l]P (80 μM) and 3-methylcholanthrene-treated rat liver microsomes with or without ARP (3 mM). The inclusion of ARP in the adduct-forming reaction resulted in significantly greater detection of abasic sites (62 lesions/106 bp versus 3.7 lesions/106 bp). DB[a,l]P also induces DNA strand breaks. The strand breaks may occur at abasic sites and by other mechanisms, such as oxidative damage. ARP/O-methoxyamine-abasic site conjugates are refractory to strand breakage, however, ARP or O-methoxyamine (3-10 mM) could only partially protect DB[a,l]P-induced DNA degradation, presumably by protecting the abasic sites, but not the other strand breaks. These results suggest that if DNA strand breakages occur at the abasic sites or at bases flanking them, and the fragments are lost during DNA extraction, abasic site estimation could be compromised. To obtain an independent line of evidence for abasic site formation in DB[a,l]P-treated cells, mouse Mβ16 fibroblasts were treated with DB[a,l]P and O-methoxyamine. O-Methoxyamine is known to potentiate cytotoxicity of abasic site-inducing chemicals by forming abasic site conjugates, which partially inhibits their repair. O-Methoxyamine was found to increase DB[a,l]P cytotoxicity in these cells, supporting the idea that DB[a,l]P formed abasic sites. In summary, the inclusion of ARP in the DB[a,l]P-DNA adduct-forming reaction traps and protects the nascent abasic sites, allowing an improved quantification of abasic sites.",
keywords = "Abasic sites, Aldehyde-reactive probe assay, Dibenzo[a,l]pyrene",
author = "Dhrubajyoti Chakravarti and Badawi, {Alaa F.} and Divya Venugopal and Meza, {Jane L} and Crandall, {Lisa Z.} and Rogan, {Eleanor G} and Ercole Cavalieri",
year = "2005",
month = "12",
day = "30",
doi = "10.1016/j.mrgentox.2005.10.005",
language = "English (US)",
volume = "588",
pages = "158--165",
journal = "Mutation Research - Genetic Toxicology and Environmental Mutagenesis",
issn = "1383-5718",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Improved measurement of dibenzo[a,l]pyrene-induced abasic sites by the aldehyde-reactive probe assay

AU - Chakravarti, Dhrubajyoti

AU - Badawi, Alaa F.

AU - Venugopal, Divya

AU - Meza, Jane L

AU - Crandall, Lisa Z.

AU - Rogan, Eleanor G

AU - Cavalieri, Ercole

PY - 2005/12/30

Y1 - 2005/12/30

N2 - Dibenzo[a,l]pyrene (DB[a,l]P) induces abundant amounts of depurinating adducts that spontaneously dissociate to form abasic sites in DNA. However, several previous studies that used the aldehyde-reactive probe (ARP) assay, could not verify abasic site formation by DB[a,l]P. Therefore, we examined whether a modification of the ARP assay would allow greater quantification of abasic sites. A previous study indicated that the abasic site quantification is improved by letting ARP trap the nascent abasic sites in cells, before extracting DNA for the assay. To test whether the addition of ARP to the DB[a,l]P-DNA adduct-forming reaction would improve abasic site quantification, we treated calf thymus DNA (0.625 mg/mL) with DB[a,l]P (80 μM) and 3-methylcholanthrene-treated rat liver microsomes with or without ARP (3 mM). The inclusion of ARP in the adduct-forming reaction resulted in significantly greater detection of abasic sites (62 lesions/106 bp versus 3.7 lesions/106 bp). DB[a,l]P also induces DNA strand breaks. The strand breaks may occur at abasic sites and by other mechanisms, such as oxidative damage. ARP/O-methoxyamine-abasic site conjugates are refractory to strand breakage, however, ARP or O-methoxyamine (3-10 mM) could only partially protect DB[a,l]P-induced DNA degradation, presumably by protecting the abasic sites, but not the other strand breaks. These results suggest that if DNA strand breakages occur at the abasic sites or at bases flanking them, and the fragments are lost during DNA extraction, abasic site estimation could be compromised. To obtain an independent line of evidence for abasic site formation in DB[a,l]P-treated cells, mouse Mβ16 fibroblasts were treated with DB[a,l]P and O-methoxyamine. O-Methoxyamine is known to potentiate cytotoxicity of abasic site-inducing chemicals by forming abasic site conjugates, which partially inhibits their repair. O-Methoxyamine was found to increase DB[a,l]P cytotoxicity in these cells, supporting the idea that DB[a,l]P formed abasic sites. In summary, the inclusion of ARP in the DB[a,l]P-DNA adduct-forming reaction traps and protects the nascent abasic sites, allowing an improved quantification of abasic sites.

AB - Dibenzo[a,l]pyrene (DB[a,l]P) induces abundant amounts of depurinating adducts that spontaneously dissociate to form abasic sites in DNA. However, several previous studies that used the aldehyde-reactive probe (ARP) assay, could not verify abasic site formation by DB[a,l]P. Therefore, we examined whether a modification of the ARP assay would allow greater quantification of abasic sites. A previous study indicated that the abasic site quantification is improved by letting ARP trap the nascent abasic sites in cells, before extracting DNA for the assay. To test whether the addition of ARP to the DB[a,l]P-DNA adduct-forming reaction would improve abasic site quantification, we treated calf thymus DNA (0.625 mg/mL) with DB[a,l]P (80 μM) and 3-methylcholanthrene-treated rat liver microsomes with or without ARP (3 mM). The inclusion of ARP in the adduct-forming reaction resulted in significantly greater detection of abasic sites (62 lesions/106 bp versus 3.7 lesions/106 bp). DB[a,l]P also induces DNA strand breaks. The strand breaks may occur at abasic sites and by other mechanisms, such as oxidative damage. ARP/O-methoxyamine-abasic site conjugates are refractory to strand breakage, however, ARP or O-methoxyamine (3-10 mM) could only partially protect DB[a,l]P-induced DNA degradation, presumably by protecting the abasic sites, but not the other strand breaks. These results suggest that if DNA strand breakages occur at the abasic sites or at bases flanking them, and the fragments are lost during DNA extraction, abasic site estimation could be compromised. To obtain an independent line of evidence for abasic site formation in DB[a,l]P-treated cells, mouse Mβ16 fibroblasts were treated with DB[a,l]P and O-methoxyamine. O-Methoxyamine is known to potentiate cytotoxicity of abasic site-inducing chemicals by forming abasic site conjugates, which partially inhibits their repair. O-Methoxyamine was found to increase DB[a,l]P cytotoxicity in these cells, supporting the idea that DB[a,l]P formed abasic sites. In summary, the inclusion of ARP in the DB[a,l]P-DNA adduct-forming reaction traps and protects the nascent abasic sites, allowing an improved quantification of abasic sites.

KW - Abasic sites

KW - Aldehyde-reactive probe assay

KW - Dibenzo[a,l]pyrene

UR - http://www.scopus.com/inward/record.url?scp=28944448058&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=28944448058&partnerID=8YFLogxK

U2 - 10.1016/j.mrgentox.2005.10.005

DO - 10.1016/j.mrgentox.2005.10.005

M3 - Article

C2 - 16298157

AN - SCOPUS:28944448058

VL - 588

SP - 158

EP - 165

JO - Mutation Research - Genetic Toxicology and Environmental Mutagenesis

JF - Mutation Research - Genetic Toxicology and Environmental Mutagenesis

SN - 1383-5718

IS - 2

ER -