Human β-Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms

Sophie Joly, Connie Maze, Paul B. McCray, Janet M. Guthmiller

Research output: Contribution to journalArticle

195 Citations (Scopus)

Abstract

Human β-defensins 2 and 3 (HBD-2 and HBD-3) are inducible peptides present at sites of infection in the oral cavity. A few studies have reported broad-spectrum antimicrobial activity for both peptides. However, no comprehensive study has thoroughly investigated their potential against oral pathogens. The purpose of this study was to test the effectiveness of HBD-2 and HBD-3 against a collection of oral organisms (Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Peptostreptococcus micros, Actinomyces naeslundii, Actinomyces israelii, Streptococcus sanguis, Streptococcus mutans, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida glabrata, and Candida albicans). Radial diffusion assays were used to test HBD-2 and HBD-3 activities against at least three strains of each species. There was significant variability in MICs, which was strain specific rather than species specific. MICs ranged from 3.9 to >250 μg/ml for HBD-2 and from 1.4 to >250 μg/ml for HBD-3. HBD-3 demonstrated greater antimicrobial activity and was effective against a broader array of organisms. Overall, aerobes were 100% susceptible to HBD-2 and HBD-3, whereas only 21.4 and 50% of the anaerobes were susceptible to HBD-2 and HBD-3, respectively. HBD-2 and HBD-3 also demonstrated strain-specific activity against the Candida species evaluated. Interestingly, an association between HBD-2 and HBD-3 activities was noted. This suggests that the two peptides may have similar mechanisms yet utilize distinct pathways. The lack of activity against specific anaerobic strains and Candida warrants further investigation of the potential resistance mechanisms of these organisms. Finally, the significant variability between strains underlies the importance of testing multiple strains when evaluating activities of antimicrobial peptides.

Original languageEnglish (US)
Pages (from-to)1024-1029
Number of pages6
JournalJournal of clinical microbiology
Volume42
Issue number3
DOIs
StatePublished - Mar 1 2004

Fingerprint

Defensins
Candida
Actinomyces
Peptides
Streptococcus sanguis
Fusobacterium nucleatum
Peptostreptococcus
Candida tropicalis
Candida glabrata
Aggregatibacter actinomycetemcomitans
Porphyromonas gingivalis
Streptococcus mutans
Candida albicans
Mouth
Infection

ASJC Scopus subject areas

  • Microbiology (medical)

Cite this

Human β-Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms. / Joly, Sophie; Maze, Connie; McCray, Paul B.; Guthmiller, Janet M.

In: Journal of clinical microbiology, Vol. 42, No. 3, 01.03.2004, p. 1024-1029.

Research output: Contribution to journalArticle

@article{33a95663296742f3ae258c494d1faf3d,
title = "Human β-Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms",
abstract = "Human β-defensins 2 and 3 (HBD-2 and HBD-3) are inducible peptides present at sites of infection in the oral cavity. A few studies have reported broad-spectrum antimicrobial activity for both peptides. However, no comprehensive study has thoroughly investigated their potential against oral pathogens. The purpose of this study was to test the effectiveness of HBD-2 and HBD-3 against a collection of oral organisms (Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Peptostreptococcus micros, Actinomyces naeslundii, Actinomyces israelii, Streptococcus sanguis, Streptococcus mutans, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida glabrata, and Candida albicans). Radial diffusion assays were used to test HBD-2 and HBD-3 activities against at least three strains of each species. There was significant variability in MICs, which was strain specific rather than species specific. MICs ranged from 3.9 to >250 μg/ml for HBD-2 and from 1.4 to >250 μg/ml for HBD-3. HBD-3 demonstrated greater antimicrobial activity and was effective against a broader array of organisms. Overall, aerobes were 100{\%} susceptible to HBD-2 and HBD-3, whereas only 21.4 and 50{\%} of the anaerobes were susceptible to HBD-2 and HBD-3, respectively. HBD-2 and HBD-3 also demonstrated strain-specific activity against the Candida species evaluated. Interestingly, an association between HBD-2 and HBD-3 activities was noted. This suggests that the two peptides may have similar mechanisms yet utilize distinct pathways. The lack of activity against specific anaerobic strains and Candida warrants further investigation of the potential resistance mechanisms of these organisms. Finally, the significant variability between strains underlies the importance of testing multiple strains when evaluating activities of antimicrobial peptides.",
author = "Sophie Joly and Connie Maze and McCray, {Paul B.} and Guthmiller, {Janet M.}",
year = "2004",
month = "3",
day = "1",
doi = "10.1128/JCM.42.3.1024-1029.2004",
language = "English (US)",
volume = "42",
pages = "1024--1029",
journal = "Journal of Clinical Microbiology",
issn = "0095-1137",
publisher = "American Society for Microbiology",
number = "3",

}

TY - JOUR

T1 - Human β-Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms

AU - Joly, Sophie

AU - Maze, Connie

AU - McCray, Paul B.

AU - Guthmiller, Janet M.

PY - 2004/3/1

Y1 - 2004/3/1

N2 - Human β-defensins 2 and 3 (HBD-2 and HBD-3) are inducible peptides present at sites of infection in the oral cavity. A few studies have reported broad-spectrum antimicrobial activity for both peptides. However, no comprehensive study has thoroughly investigated their potential against oral pathogens. The purpose of this study was to test the effectiveness of HBD-2 and HBD-3 against a collection of oral organisms (Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Peptostreptococcus micros, Actinomyces naeslundii, Actinomyces israelii, Streptococcus sanguis, Streptococcus mutans, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida glabrata, and Candida albicans). Radial diffusion assays were used to test HBD-2 and HBD-3 activities against at least three strains of each species. There was significant variability in MICs, which was strain specific rather than species specific. MICs ranged from 3.9 to >250 μg/ml for HBD-2 and from 1.4 to >250 μg/ml for HBD-3. HBD-3 demonstrated greater antimicrobial activity and was effective against a broader array of organisms. Overall, aerobes were 100% susceptible to HBD-2 and HBD-3, whereas only 21.4 and 50% of the anaerobes were susceptible to HBD-2 and HBD-3, respectively. HBD-2 and HBD-3 also demonstrated strain-specific activity against the Candida species evaluated. Interestingly, an association between HBD-2 and HBD-3 activities was noted. This suggests that the two peptides may have similar mechanisms yet utilize distinct pathways. The lack of activity against specific anaerobic strains and Candida warrants further investigation of the potential resistance mechanisms of these organisms. Finally, the significant variability between strains underlies the importance of testing multiple strains when evaluating activities of antimicrobial peptides.

AB - Human β-defensins 2 and 3 (HBD-2 and HBD-3) are inducible peptides present at sites of infection in the oral cavity. A few studies have reported broad-spectrum antimicrobial activity for both peptides. However, no comprehensive study has thoroughly investigated their potential against oral pathogens. The purpose of this study was to test the effectiveness of HBD-2 and HBD-3 against a collection of oral organisms (Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Peptostreptococcus micros, Actinomyces naeslundii, Actinomyces israelii, Streptococcus sanguis, Streptococcus mutans, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida glabrata, and Candida albicans). Radial diffusion assays were used to test HBD-2 and HBD-3 activities against at least three strains of each species. There was significant variability in MICs, which was strain specific rather than species specific. MICs ranged from 3.9 to >250 μg/ml for HBD-2 and from 1.4 to >250 μg/ml for HBD-3. HBD-3 demonstrated greater antimicrobial activity and was effective against a broader array of organisms. Overall, aerobes were 100% susceptible to HBD-2 and HBD-3, whereas only 21.4 and 50% of the anaerobes were susceptible to HBD-2 and HBD-3, respectively. HBD-2 and HBD-3 also demonstrated strain-specific activity against the Candida species evaluated. Interestingly, an association between HBD-2 and HBD-3 activities was noted. This suggests that the two peptides may have similar mechanisms yet utilize distinct pathways. The lack of activity against specific anaerobic strains and Candida warrants further investigation of the potential resistance mechanisms of these organisms. Finally, the significant variability between strains underlies the importance of testing multiple strains when evaluating activities of antimicrobial peptides.

UR - http://www.scopus.com/inward/record.url?scp=1542513868&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1542513868&partnerID=8YFLogxK

U2 - 10.1128/JCM.42.3.1024-1029.2004

DO - 10.1128/JCM.42.3.1024-1029.2004

M3 - Article

C2 - 15004048

AN - SCOPUS:1542513868

VL - 42

SP - 1024

EP - 1029

JO - Journal of Clinical Microbiology

JF - Journal of Clinical Microbiology

SN - 0095-1137

IS - 3

ER -