hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells

Xiao Qin Huang, Juan Wang, Jin Ping Liu, Hao Feng, Wen Bin Liu, Qin Yan, Yan Liu, Shu Ming Sun, Mi Deng, Lili Gong, Yun Liu, David Wan Cheng Li

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

PURPOSE. Telomerase is a specialized polymerase that catalyzes synthesis of telomeres in most eukaryotes. When introduced into somatic cells, it extends the proliferative lifespan and prevents replicative senescence. Whether it has similar functions in lens epithelial cells, especially in human lens epithelial cells (HLECs) remains to be determined. In this study, the human telomerase reverse transcriptase (hTERT) catalytic subunit was introduced into HLECs. A stable cell line expressing hTERT was established and the functions of hTERT were studied. METHODS. The telomeric repeat amplification protocol (TRAP) assay was used to analyze the telomerase activity. Western blot analysis was used to examine hTERT expression. Southern blot analysis was used to detect telomere length. HLECs isolated from intact lenses were cultured in DMEM and transfected with hTERT cDNA. The expression of the exogenous hTERT was examined with RT-PCR, Western blot analysis, and TRAP assay. The functions of hTERT were examined with various techniques. RESULTS. Among the human, bovine, and rabbit lenses examined, only the central epithelium from the 6-month rabbit lens displayed telomerase activity. In both transparent and cataractous human lenses, hTERT activity and expression were not detected. However, the template RNA was present in both types of human lenses. The telomeres in transparent lenses were approximately 1 kb longer than those in cataractous lenses. The primary cultures and later passages of HLECs also displayed no detectable telomerase activity. Introduction of hTERT cDNA into HLECs followed by G418 selection yielded a stable line of HLECs expressing hTERT. In this line, hTERT has supported normal growth after 48 population doublings (PDs) to date and also enhanced antiapoptotic activity against oxidative stress. CONCLUSIONS. Telomere lengths may be associated with cataractogenesis. hTERT introduced into HLECs prevents replicative senescence through telomere synthesis. Furthermore, hTERT displays functions beyond telomere synthesis in normal HLECs.

Original languageEnglish (US)
Pages (from-to)2503-2513
Number of pages11
JournalInvestigative Ophthalmology and Visual Science
Volume46
Issue number7
DOIs
StatePublished - Dec 1 2005

Fingerprint

Lenses
Oxidative Stress
Epithelial Cells
Apoptosis
Telomere
Telomerase
human TERT protein
Cell Aging
Complementary DNA
Western Blotting
Rabbits
Southern Blotting
Eukaryota
Epithelium

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Cite this

hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells. / Huang, Xiao Qin; Wang, Juan; Liu, Jin Ping; Feng, Hao; Liu, Wen Bin; Yan, Qin; Liu, Yan; Sun, Shu Ming; Deng, Mi; Gong, Lili; Liu, Yun; Li, David Wan Cheng.

In: Investigative Ophthalmology and Visual Science, Vol. 46, No. 7, 01.12.2005, p. 2503-2513.

Research output: Contribution to journalArticle

Huang, XQ, Wang, J, Liu, JP, Feng, H, Liu, WB, Yan, Q, Liu, Y, Sun, SM, Deng, M, Gong, L, Liu, Y & Li, DWC 2005, 'hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells', Investigative Ophthalmology and Visual Science, vol. 46, no. 7, pp. 2503-2513. https://doi.org/10.1167/iovs.05-0154
Huang, Xiao Qin ; Wang, Juan ; Liu, Jin Ping ; Feng, Hao ; Liu, Wen Bin ; Yan, Qin ; Liu, Yan ; Sun, Shu Ming ; Deng, Mi ; Gong, Lili ; Liu, Yun ; Li, David Wan Cheng. / hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells. In: Investigative Ophthalmology and Visual Science. 2005 ; Vol. 46, No. 7. pp. 2503-2513.
@article{4d3c081762b1480e894d75b47ea5a179,
title = "hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells",
abstract = "PURPOSE. Telomerase is a specialized polymerase that catalyzes synthesis of telomeres in most eukaryotes. When introduced into somatic cells, it extends the proliferative lifespan and prevents replicative senescence. Whether it has similar functions in lens epithelial cells, especially in human lens epithelial cells (HLECs) remains to be determined. In this study, the human telomerase reverse transcriptase (hTERT) catalytic subunit was introduced into HLECs. A stable cell line expressing hTERT was established and the functions of hTERT were studied. METHODS. The telomeric repeat amplification protocol (TRAP) assay was used to analyze the telomerase activity. Western blot analysis was used to examine hTERT expression. Southern blot analysis was used to detect telomere length. HLECs isolated from intact lenses were cultured in DMEM and transfected with hTERT cDNA. The expression of the exogenous hTERT was examined with RT-PCR, Western blot analysis, and TRAP assay. The functions of hTERT were examined with various techniques. RESULTS. Among the human, bovine, and rabbit lenses examined, only the central epithelium from the 6-month rabbit lens displayed telomerase activity. In both transparent and cataractous human lenses, hTERT activity and expression were not detected. However, the template RNA was present in both types of human lenses. The telomeres in transparent lenses were approximately 1 kb longer than those in cataractous lenses. The primary cultures and later passages of HLECs also displayed no detectable telomerase activity. Introduction of hTERT cDNA into HLECs followed by G418 selection yielded a stable line of HLECs expressing hTERT. In this line, hTERT has supported normal growth after 48 population doublings (PDs) to date and also enhanced antiapoptotic activity against oxidative stress. CONCLUSIONS. Telomere lengths may be associated with cataractogenesis. hTERT introduced into HLECs prevents replicative senescence through telomere synthesis. Furthermore, hTERT displays functions beyond telomere synthesis in normal HLECs.",
author = "Huang, {Xiao Qin} and Juan Wang and Liu, {Jin Ping} and Hao Feng and Liu, {Wen Bin} and Qin Yan and Yan Liu and Sun, {Shu Ming} and Mi Deng and Lili Gong and Yun Liu and Li, {David Wan Cheng}",
year = "2005",
month = "12",
day = "1",
doi = "10.1167/iovs.05-0154",
language = "English (US)",
volume = "46",
pages = "2503--2513",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "7",

}

TY - JOUR

T1 - hTERT extends proliferative lifespan and prevents oxidative stress-induced apoptosis in human lens epithelial cells

AU - Huang, Xiao Qin

AU - Wang, Juan

AU - Liu, Jin Ping

AU - Feng, Hao

AU - Liu, Wen Bin

AU - Yan, Qin

AU - Liu, Yan

AU - Sun, Shu Ming

AU - Deng, Mi

AU - Gong, Lili

AU - Liu, Yun

AU - Li, David Wan Cheng

PY - 2005/12/1

Y1 - 2005/12/1

N2 - PURPOSE. Telomerase is a specialized polymerase that catalyzes synthesis of telomeres in most eukaryotes. When introduced into somatic cells, it extends the proliferative lifespan and prevents replicative senescence. Whether it has similar functions in lens epithelial cells, especially in human lens epithelial cells (HLECs) remains to be determined. In this study, the human telomerase reverse transcriptase (hTERT) catalytic subunit was introduced into HLECs. A stable cell line expressing hTERT was established and the functions of hTERT were studied. METHODS. The telomeric repeat amplification protocol (TRAP) assay was used to analyze the telomerase activity. Western blot analysis was used to examine hTERT expression. Southern blot analysis was used to detect telomere length. HLECs isolated from intact lenses were cultured in DMEM and transfected with hTERT cDNA. The expression of the exogenous hTERT was examined with RT-PCR, Western blot analysis, and TRAP assay. The functions of hTERT were examined with various techniques. RESULTS. Among the human, bovine, and rabbit lenses examined, only the central epithelium from the 6-month rabbit lens displayed telomerase activity. In both transparent and cataractous human lenses, hTERT activity and expression were not detected. However, the template RNA was present in both types of human lenses. The telomeres in transparent lenses were approximately 1 kb longer than those in cataractous lenses. The primary cultures and later passages of HLECs also displayed no detectable telomerase activity. Introduction of hTERT cDNA into HLECs followed by G418 selection yielded a stable line of HLECs expressing hTERT. In this line, hTERT has supported normal growth after 48 population doublings (PDs) to date and also enhanced antiapoptotic activity against oxidative stress. CONCLUSIONS. Telomere lengths may be associated with cataractogenesis. hTERT introduced into HLECs prevents replicative senescence through telomere synthesis. Furthermore, hTERT displays functions beyond telomere synthesis in normal HLECs.

AB - PURPOSE. Telomerase is a specialized polymerase that catalyzes synthesis of telomeres in most eukaryotes. When introduced into somatic cells, it extends the proliferative lifespan and prevents replicative senescence. Whether it has similar functions in lens epithelial cells, especially in human lens epithelial cells (HLECs) remains to be determined. In this study, the human telomerase reverse transcriptase (hTERT) catalytic subunit was introduced into HLECs. A stable cell line expressing hTERT was established and the functions of hTERT were studied. METHODS. The telomeric repeat amplification protocol (TRAP) assay was used to analyze the telomerase activity. Western blot analysis was used to examine hTERT expression. Southern blot analysis was used to detect telomere length. HLECs isolated from intact lenses were cultured in DMEM and transfected with hTERT cDNA. The expression of the exogenous hTERT was examined with RT-PCR, Western blot analysis, and TRAP assay. The functions of hTERT were examined with various techniques. RESULTS. Among the human, bovine, and rabbit lenses examined, only the central epithelium from the 6-month rabbit lens displayed telomerase activity. In both transparent and cataractous human lenses, hTERT activity and expression were not detected. However, the template RNA was present in both types of human lenses. The telomeres in transparent lenses were approximately 1 kb longer than those in cataractous lenses. The primary cultures and later passages of HLECs also displayed no detectable telomerase activity. Introduction of hTERT cDNA into HLECs followed by G418 selection yielded a stable line of HLECs expressing hTERT. In this line, hTERT has supported normal growth after 48 population doublings (PDs) to date and also enhanced antiapoptotic activity against oxidative stress. CONCLUSIONS. Telomere lengths may be associated with cataractogenesis. hTERT introduced into HLECs prevents replicative senescence through telomere synthesis. Furthermore, hTERT displays functions beyond telomere synthesis in normal HLECs.

UR - http://www.scopus.com/inward/record.url?scp=20744441769&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20744441769&partnerID=8YFLogxK

U2 - 10.1167/iovs.05-0154

DO - 10.1167/iovs.05-0154

M3 - Article

C2 - 15980242

AN - SCOPUS:20744441769

VL - 46

SP - 2503

EP - 2513

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 7

ER -