Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture

S. K. Roy, G. S. Greenwald

Research output: Contribution to journalArticle

114 Citations (Scopus)

Abstract

Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 μg progesterone or oestradiol-17β in serum-free defined medium and exposed to 1 μCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.

Original languageEnglish (US)
Pages (from-to)103-114
Number of pages12
JournalJournal of reproduction and fertility
Volume87
Issue number1
DOIs
StatePublished - Jan 1 1989

Fingerprint

Granulosa Cells
Cricetinae
Estradiol
Progesterone
Growth
Gonadotropins
Microdissection
Ovarian Follicle
Androstenedione
DNA
Serum-Free Culture Media
Thymidine
Hydrocortisone
Sheep
Cell Count
Insulin

ASJC Scopus subject areas

  • Physiology
  • Embryology
  • Molecular Biology
  • Obstetrics and Gynecology
  • Developmental Biology

Cite this

Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture. / Roy, S. K.; Greenwald, G. S.

In: Journal of reproduction and fertility, Vol. 87, No. 1, 01.01.1989, p. 103-114.

Research output: Contribution to journalArticle

@article{b7f6a8b9d802404484ec7069b8e4ca47,
title = "Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture",
abstract = "Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 μg progesterone or oestradiol-17β in serum-free defined medium and exposed to 1 μCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.",
author = "Roy, {S. K.} and Greenwald, {G. S.}",
year = "1989",
month = "1",
day = "1",
doi = "10.1530/jrf.0.0870103",
language = "English (US)",
volume = "87",
pages = "103--114",
journal = "Journal of Reproduction and Fertility",
issn = "0022-4251",
publisher = "Society for Reproduction and Fertility",
number = "1",

}

TY - JOUR

T1 - Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture

AU - Roy, S. K.

AU - Greenwald, G. S.

PY - 1989/1/1

Y1 - 1989/1/1

N2 - Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 μg progesterone or oestradiol-17β in serum-free defined medium and exposed to 1 μCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.

AB - Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 μg progesterone or oestradiol-17β in serum-free defined medium and exposed to 1 μCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.

UR - http://www.scopus.com/inward/record.url?scp=0024465897&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024465897&partnerID=8YFLogxK

U2 - 10.1530/jrf.0.0870103

DO - 10.1530/jrf.0.0870103

M3 - Article

C2 - 2621686

AN - SCOPUS:0024465897

VL - 87

SP - 103

EP - 114

JO - Journal of Reproduction and Fertility

JF - Journal of Reproduction and Fertility

SN - 0022-4251

IS - 1

ER -