Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina

Norbert Babai, Wallace B Thoreson

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

We tested whether horizontal cells (HCs) provide feedback that regulates the Ca2+ current (ICa) of rods in salamander and mouse retinas. In both species, hyperpolarizing HCs by puffing a glutamate antagonist, 6,7-dinitro-quinoxaline-2,3-dione (DNQX), onto HC processes caused a negative shift in the voltage dependence of rod ICa and increased its peak amplitude. Conversely, depolarizing HCs by puffing kainic acid (KA) into the outer plexiform layer (OPL) caused a positive voltage shift and decreased rod ICa. Experiments on salamander retina showed that these effects were blocked by addition of the pH buffer, Hepes. Intracellular calcium concentration ([Ca2+]i) was examined in rods by confocal microscopy after loading salamander and mouse retinal slices with Fluo-4. Rods were depolarized to near the dark resting potential by bath application of high K+ solutions. Hyperpolarizing HCs with 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f] quinoxaline (NBQX) enhanced high K+-evoked Ca2+ increases whereas depolarizing HCs with KA inhibited Ca2+ increases. In both species these effects of NBQX and KA were blocked by addition of Hepes. Thus, like HC feedback in cones, changes in HC membrane potential modulate rod ICa thereby regulating rod [Ca2+]i at physiological voltages, in both mouse and salamander retinas. By countering the reduced synaptic output that accompanies hyperpolarization of rods to light, HC feedback will subtract spatially averaged luminance levels from the responses of individual rods to local changes. The finding that HC to rod feedback is present in both amphibian and mammalian species shows that this mechanism is highly conserved across vertebrate retinas.

Original languageEnglish (US)
Pages (from-to)2353-2364
Number of pages12
JournalJournal of Physiology
Volume587
Issue number10
DOIs
StatePublished - May 28 2009

Fingerprint

Retinal Rod Photoreceptor Cells
Urodela
Retina
Calcium
Kainic Acid
Quinoxalines
Membrane Potentials
Excitatory Amino Acid Antagonists
Amphibians
Baths
Confocal Microscopy
Vertebrates
Buffers
Cell Membrane
Light

ASJC Scopus subject areas

  • Physiology

Cite this

Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina. / Babai, Norbert; Thoreson, Wallace B.

In: Journal of Physiology, Vol. 587, No. 10, 28.05.2009, p. 2353-2364.

Research output: Contribution to journalArticle

@article{bfb3a88b664f49a098920f41f9599b0a,
title = "Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina",
abstract = "We tested whether horizontal cells (HCs) provide feedback that regulates the Ca2+ current (ICa) of rods in salamander and mouse retinas. In both species, hyperpolarizing HCs by puffing a glutamate antagonist, 6,7-dinitro-quinoxaline-2,3-dione (DNQX), onto HC processes caused a negative shift in the voltage dependence of rod ICa and increased its peak amplitude. Conversely, depolarizing HCs by puffing kainic acid (KA) into the outer plexiform layer (OPL) caused a positive voltage shift and decreased rod ICa. Experiments on salamander retina showed that these effects were blocked by addition of the pH buffer, Hepes. Intracellular calcium concentration ([Ca2+]i) was examined in rods by confocal microscopy after loading salamander and mouse retinal slices with Fluo-4. Rods were depolarized to near the dark resting potential by bath application of high K+ solutions. Hyperpolarizing HCs with 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f] quinoxaline (NBQX) enhanced high K+-evoked Ca2+ increases whereas depolarizing HCs with KA inhibited Ca2+ increases. In both species these effects of NBQX and KA were blocked by addition of Hepes. Thus, like HC feedback in cones, changes in HC membrane potential modulate rod ICa thereby regulating rod [Ca2+]i at physiological voltages, in both mouse and salamander retinas. By countering the reduced synaptic output that accompanies hyperpolarization of rods to light, HC feedback will subtract spatially averaged luminance levels from the responses of individual rods to local changes. The finding that HC to rod feedback is present in both amphibian and mammalian species shows that this mechanism is highly conserved across vertebrate retinas.",
author = "Norbert Babai and Thoreson, {Wallace B}",
year = "2009",
month = "5",
day = "28",
doi = "10.1113/jphysiol.2009.169656",
language = "English (US)",
volume = "587",
pages = "2353--2364",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "10",

}

TY - JOUR

T1 - Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina

AU - Babai, Norbert

AU - Thoreson, Wallace B

PY - 2009/5/28

Y1 - 2009/5/28

N2 - We tested whether horizontal cells (HCs) provide feedback that regulates the Ca2+ current (ICa) of rods in salamander and mouse retinas. In both species, hyperpolarizing HCs by puffing a glutamate antagonist, 6,7-dinitro-quinoxaline-2,3-dione (DNQX), onto HC processes caused a negative shift in the voltage dependence of rod ICa and increased its peak amplitude. Conversely, depolarizing HCs by puffing kainic acid (KA) into the outer plexiform layer (OPL) caused a positive voltage shift and decreased rod ICa. Experiments on salamander retina showed that these effects were blocked by addition of the pH buffer, Hepes. Intracellular calcium concentration ([Ca2+]i) was examined in rods by confocal microscopy after loading salamander and mouse retinal slices with Fluo-4. Rods were depolarized to near the dark resting potential by bath application of high K+ solutions. Hyperpolarizing HCs with 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f] quinoxaline (NBQX) enhanced high K+-evoked Ca2+ increases whereas depolarizing HCs with KA inhibited Ca2+ increases. In both species these effects of NBQX and KA were blocked by addition of Hepes. Thus, like HC feedback in cones, changes in HC membrane potential modulate rod ICa thereby regulating rod [Ca2+]i at physiological voltages, in both mouse and salamander retinas. By countering the reduced synaptic output that accompanies hyperpolarization of rods to light, HC feedback will subtract spatially averaged luminance levels from the responses of individual rods to local changes. The finding that HC to rod feedback is present in both amphibian and mammalian species shows that this mechanism is highly conserved across vertebrate retinas.

AB - We tested whether horizontal cells (HCs) provide feedback that regulates the Ca2+ current (ICa) of rods in salamander and mouse retinas. In both species, hyperpolarizing HCs by puffing a glutamate antagonist, 6,7-dinitro-quinoxaline-2,3-dione (DNQX), onto HC processes caused a negative shift in the voltage dependence of rod ICa and increased its peak amplitude. Conversely, depolarizing HCs by puffing kainic acid (KA) into the outer plexiform layer (OPL) caused a positive voltage shift and decreased rod ICa. Experiments on salamander retina showed that these effects were blocked by addition of the pH buffer, Hepes. Intracellular calcium concentration ([Ca2+]i) was examined in rods by confocal microscopy after loading salamander and mouse retinal slices with Fluo-4. Rods were depolarized to near the dark resting potential by bath application of high K+ solutions. Hyperpolarizing HCs with 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f] quinoxaline (NBQX) enhanced high K+-evoked Ca2+ increases whereas depolarizing HCs with KA inhibited Ca2+ increases. In both species these effects of NBQX and KA were blocked by addition of Hepes. Thus, like HC feedback in cones, changes in HC membrane potential modulate rod ICa thereby regulating rod [Ca2+]i at physiological voltages, in both mouse and salamander retinas. By countering the reduced synaptic output that accompanies hyperpolarization of rods to light, HC feedback will subtract spatially averaged luminance levels from the responses of individual rods to local changes. The finding that HC to rod feedback is present in both amphibian and mammalian species shows that this mechanism is highly conserved across vertebrate retinas.

UR - http://www.scopus.com/inward/record.url?scp=65749116418&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65749116418&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2009.169656

DO - 10.1113/jphysiol.2009.169656

M3 - Article

C2 - 19332495

AN - SCOPUS:65749116418

VL - 587

SP - 2353

EP - 2364

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 10

ER -