Hemodynamics and pathology of an enlarging abdominal aortic aneurysm model in rabbits

Hongmei Chen, Yonghua Bi, Siyeong Ju, Linxia Gu, Xiaoyan Zhu, Xinwei Han

Research output: Contribution to journalArticle

Abstract

Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were sacrificed after 1, 5, and 15 weeks for pathological and quantitative studies. The higher velocity magnitude, intensified bulk flow and obvious vortex formation were observed in Group A at week 3 instead of week 15. Both low wall shear stress and high relative residence time increased in Group B, however, high oscillatory shear index had relatively less increase compared with Group A. Aortic diameter reached a plateau at 5 weeks in Group A, which was significantly lower than in week 15 in Group B. Intimal hyperplasia, intima-media thickness increased significantly in Group A at week 5, significantly higher than in week 15 in Group B. Marked destruction of elastin fibers and smooth muscle cells occurred at week 1, and increased significantly at week 15 in Group A. Aneurysm exhibited strong expression of matrix metalloproteinase 9 and mouse anti-rabbit macrophage 11 at week 1, and showed a tendency to decrease. Matrix metalloproteinase 2 expression decreased significantly in Group B at week 15 compared with week 5 and Group A. In conclusion, the self-healing of rabbit AAA may attributed to the regeneration of smooth muscle cells. The turbulence flow caused by coarctation is associated with continuous growth of rabbit AAA and prevents the self-healing phenomenon.

Original languageEnglish (US)
Article numbere0205366
JournalPloS one
Volume13
Issue number10
DOIs
StatePublished - Oct 2018

Fingerprint

aneurysm
Abdominal Aortic Aneurysm
Hemodynamics
Pathology
hemodynamics
Muscle
rabbits
Cells
Rabbits
Elastin
Macrophages
Pancreatic Elastase
Matrix Metalloproteinase 2
Balloons
Matrix Metalloproteinase 9
Dynamic analysis
Shear stress
Computational fluid dynamics
Vortex flow
Turbulence

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Hemodynamics and pathology of an enlarging abdominal aortic aneurysm model in rabbits. / Chen, Hongmei; Bi, Yonghua; Ju, Siyeong; Gu, Linxia; Zhu, Xiaoyan; Han, Xinwei.

In: PloS one, Vol. 13, No. 10, e0205366, 10.2018.

Research output: Contribution to journalArticle

Chen, Hongmei ; Bi, Yonghua ; Ju, Siyeong ; Gu, Linxia ; Zhu, Xiaoyan ; Han, Xinwei. / Hemodynamics and pathology of an enlarging abdominal aortic aneurysm model in rabbits. In: PloS one. 2018 ; Vol. 13, No. 10.
@article{588ffbb342f541729f98d9333d72b2d6,
title = "Hemodynamics and pathology of an enlarging abdominal aortic aneurysm model in rabbits",
abstract = "Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were sacrificed after 1, 5, and 15 weeks for pathological and quantitative studies. The higher velocity magnitude, intensified bulk flow and obvious vortex formation were observed in Group A at week 3 instead of week 15. Both low wall shear stress and high relative residence time increased in Group B, however, high oscillatory shear index had relatively less increase compared with Group A. Aortic diameter reached a plateau at 5 weeks in Group A, which was significantly lower than in week 15 in Group B. Intimal hyperplasia, intima-media thickness increased significantly in Group A at week 5, significantly higher than in week 15 in Group B. Marked destruction of elastin fibers and smooth muscle cells occurred at week 1, and increased significantly at week 15 in Group A. Aneurysm exhibited strong expression of matrix metalloproteinase 9 and mouse anti-rabbit macrophage 11 at week 1, and showed a tendency to decrease. Matrix metalloproteinase 2 expression decreased significantly in Group B at week 15 compared with week 5 and Group A. In conclusion, the self-healing of rabbit AAA may attributed to the regeneration of smooth muscle cells. The turbulence flow caused by coarctation is associated with continuous growth of rabbit AAA and prevents the self-healing phenomenon.",
author = "Hongmei Chen and Yonghua Bi and Siyeong Ju and Linxia Gu and Xiaoyan Zhu and Xinwei Han",
year = "2018",
month = "10",
doi = "10.1371/journal.pone.0205366",
language = "English (US)",
volume = "13",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Hemodynamics and pathology of an enlarging abdominal aortic aneurysm model in rabbits

AU - Chen, Hongmei

AU - Bi, Yonghua

AU - Ju, Siyeong

AU - Gu, Linxia

AU - Zhu, Xiaoyan

AU - Han, Xinwei

PY - 2018/10

Y1 - 2018/10

N2 - Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were sacrificed after 1, 5, and 15 weeks for pathological and quantitative studies. The higher velocity magnitude, intensified bulk flow and obvious vortex formation were observed in Group A at week 3 instead of week 15. Both low wall shear stress and high relative residence time increased in Group B, however, high oscillatory shear index had relatively less increase compared with Group A. Aortic diameter reached a plateau at 5 weeks in Group A, which was significantly lower than in week 15 in Group B. Intimal hyperplasia, intima-media thickness increased significantly in Group A at week 5, significantly higher than in week 15 in Group B. Marked destruction of elastin fibers and smooth muscle cells occurred at week 1, and increased significantly at week 15 in Group A. Aneurysm exhibited strong expression of matrix metalloproteinase 9 and mouse anti-rabbit macrophage 11 at week 1, and showed a tendency to decrease. Matrix metalloproteinase 2 expression decreased significantly in Group B at week 15 compared with week 5 and Group A. In conclusion, the self-healing of rabbit AAA may attributed to the regeneration of smooth muscle cells. The turbulence flow caused by coarctation is associated with continuous growth of rabbit AAA and prevents the self-healing phenomenon.

AB - Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were sacrificed after 1, 5, and 15 weeks for pathological and quantitative studies. The higher velocity magnitude, intensified bulk flow and obvious vortex formation were observed in Group A at week 3 instead of week 15. Both low wall shear stress and high relative residence time increased in Group B, however, high oscillatory shear index had relatively less increase compared with Group A. Aortic diameter reached a plateau at 5 weeks in Group A, which was significantly lower than in week 15 in Group B. Intimal hyperplasia, intima-media thickness increased significantly in Group A at week 5, significantly higher than in week 15 in Group B. Marked destruction of elastin fibers and smooth muscle cells occurred at week 1, and increased significantly at week 15 in Group A. Aneurysm exhibited strong expression of matrix metalloproteinase 9 and mouse anti-rabbit macrophage 11 at week 1, and showed a tendency to decrease. Matrix metalloproteinase 2 expression decreased significantly in Group B at week 15 compared with week 5 and Group A. In conclusion, the self-healing of rabbit AAA may attributed to the regeneration of smooth muscle cells. The turbulence flow caused by coarctation is associated with continuous growth of rabbit AAA and prevents the self-healing phenomenon.

UR - http://www.scopus.com/inward/record.url?scp=85054891315&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054891315&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0205366

DO - 10.1371/journal.pone.0205366

M3 - Article

C2 - 30312321

AN - SCOPUS:85054891315

VL - 13

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0205366

ER -