Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene

Jun Dai, Ming Li, Xiao Cheng Zeng

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

The discovery of graphene, a single atomic layer of carbon in a hexagonal lattice, has invigorated enormous research interests in two-dimensional (2D) layered materials and their one-dimensional (1D) derivatives not only owing to their extraordinary physical and chemical properties but also their high potential for applications in electronic and photonic devices. A weakness of the graphene however is its lack of a bandgap—a prerequisite for building field-effect transistors (FETs). A stream of new 2D layered materials have been developed over the past 5 years, including, among many others, silicene, phosphorene, and transition metal dichalcogenides. Monolayers of many of these 2D materials exhibit a bandgap, either direct or indirect. In 2015, a new class of 2D layered materials, namely, group-IVB transition metal trichalcogenides (TMTCs), has been uncovered. A prototypical representative of this new class of 2D materials is TiS3 whose monolayer is predicted to possess a direct band gap of about 1 eV [close to that (1.17 eV) of bulk silicon], and relatively high carrier mobility. Isolation of the few-layer TiS3 sheets and TiS3 nanoribbons via mechanical exfoliation has been realized in the laboratory in 2015. The modest 1-eV band gap, relatively high carrier mobility, as well as high chemical stability in open air render TiS3 monolayer a promising 2D material for nanoelectronic and nanophotonic applications. In this study, we give an overview of the emerging area of 2D and 1D TMTC materials and suggest future research directions related to these novel materials. WIREs Comput Mol Sci 2016, 6:211–222. doi: 10.1002/wcms.1243. For further resources related to this article, please visit the WIREs website.

Original languageEnglish (US)
Pages (from-to)211-222
Number of pages12
JournalWiley Interdisciplinary Reviews: Computational Molecular Science
Volume6
Issue number2
DOIs
StatePublished - Mar 1 2016

Fingerprint

Graphite
Graphene
Transition metals
graphene
Metals
transition metals
carrier mobility
metals
Optics and Photonics
Carbon Nanotubes
websites
Silicon
Monolayers
chemical properties
Energy gap
emerging
Carrier mobility
isolation
resources
Band Gap

ASJC Scopus subject areas

  • Biochemistry
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Computational Mathematics
  • Materials Chemistry

Cite this

@article{a81775860a37476d8e73cef1c8e265c8,
title = "Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene",
abstract = "The discovery of graphene, a single atomic layer of carbon in a hexagonal lattice, has invigorated enormous research interests in two-dimensional (2D) layered materials and their one-dimensional (1D) derivatives not only owing to their extraordinary physical and chemical properties but also their high potential for applications in electronic and photonic devices. A weakness of the graphene however is its lack of a bandgap—a prerequisite for building field-effect transistors (FETs). A stream of new 2D layered materials have been developed over the past 5 years, including, among many others, silicene, phosphorene, and transition metal dichalcogenides. Monolayers of many of these 2D materials exhibit a bandgap, either direct or indirect. In 2015, a new class of 2D layered materials, namely, group-IVB transition metal trichalcogenides (TMTCs), has been uncovered. A prototypical representative of this new class of 2D materials is TiS3 whose monolayer is predicted to possess a direct band gap of about 1 eV [close to that (1.17 eV) of bulk silicon], and relatively high carrier mobility. Isolation of the few-layer TiS3 sheets and TiS3 nanoribbons via mechanical exfoliation has been realized in the laboratory in 2015. The modest 1-eV band gap, relatively high carrier mobility, as well as high chemical stability in open air render TiS3 monolayer a promising 2D material for nanoelectronic and nanophotonic applications. In this study, we give an overview of the emerging area of 2D and 1D TMTC materials and suggest future research directions related to these novel materials. WIREs Comput Mol Sci 2016, 6:211–222. doi: 10.1002/wcms.1243. For further resources related to this article, please visit the WIREs website.",
author = "Jun Dai and Ming Li and Zeng, {Xiao Cheng}",
year = "2016",
month = "3",
day = "1",
doi = "10.1002/wcms.1243",
language = "English (US)",
volume = "6",
pages = "211--222",
journal = "Wiley Interdisciplinary Reviews: Computational Molecular Science",
issn = "1759-0876",
publisher = "John Wiley & Sons Inc.",
number = "2",

}

TY - JOUR

T1 - Group IVB transition metal trichalcogenides

T2 - a new class of 2D layered materials beyond graphene

AU - Dai, Jun

AU - Li, Ming

AU - Zeng, Xiao Cheng

PY - 2016/3/1

Y1 - 2016/3/1

N2 - The discovery of graphene, a single atomic layer of carbon in a hexagonal lattice, has invigorated enormous research interests in two-dimensional (2D) layered materials and their one-dimensional (1D) derivatives not only owing to their extraordinary physical and chemical properties but also their high potential for applications in electronic and photonic devices. A weakness of the graphene however is its lack of a bandgap—a prerequisite for building field-effect transistors (FETs). A stream of new 2D layered materials have been developed over the past 5 years, including, among many others, silicene, phosphorene, and transition metal dichalcogenides. Monolayers of many of these 2D materials exhibit a bandgap, either direct or indirect. In 2015, a new class of 2D layered materials, namely, group-IVB transition metal trichalcogenides (TMTCs), has been uncovered. A prototypical representative of this new class of 2D materials is TiS3 whose monolayer is predicted to possess a direct band gap of about 1 eV [close to that (1.17 eV) of bulk silicon], and relatively high carrier mobility. Isolation of the few-layer TiS3 sheets and TiS3 nanoribbons via mechanical exfoliation has been realized in the laboratory in 2015. The modest 1-eV band gap, relatively high carrier mobility, as well as high chemical stability in open air render TiS3 monolayer a promising 2D material for nanoelectronic and nanophotonic applications. In this study, we give an overview of the emerging area of 2D and 1D TMTC materials and suggest future research directions related to these novel materials. WIREs Comput Mol Sci 2016, 6:211–222. doi: 10.1002/wcms.1243. For further resources related to this article, please visit the WIREs website.

AB - The discovery of graphene, a single atomic layer of carbon in a hexagonal lattice, has invigorated enormous research interests in two-dimensional (2D) layered materials and their one-dimensional (1D) derivatives not only owing to their extraordinary physical and chemical properties but also their high potential for applications in electronic and photonic devices. A weakness of the graphene however is its lack of a bandgap—a prerequisite for building field-effect transistors (FETs). A stream of new 2D layered materials have been developed over the past 5 years, including, among many others, silicene, phosphorene, and transition metal dichalcogenides. Monolayers of many of these 2D materials exhibit a bandgap, either direct or indirect. In 2015, a new class of 2D layered materials, namely, group-IVB transition metal trichalcogenides (TMTCs), has been uncovered. A prototypical representative of this new class of 2D materials is TiS3 whose monolayer is predicted to possess a direct band gap of about 1 eV [close to that (1.17 eV) of bulk silicon], and relatively high carrier mobility. Isolation of the few-layer TiS3 sheets and TiS3 nanoribbons via mechanical exfoliation has been realized in the laboratory in 2015. The modest 1-eV band gap, relatively high carrier mobility, as well as high chemical stability in open air render TiS3 monolayer a promising 2D material for nanoelectronic and nanophotonic applications. In this study, we give an overview of the emerging area of 2D and 1D TMTC materials and suggest future research directions related to these novel materials. WIREs Comput Mol Sci 2016, 6:211–222. doi: 10.1002/wcms.1243. For further resources related to this article, please visit the WIREs website.

UR - http://www.scopus.com/inward/record.url?scp=84955437721&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84955437721&partnerID=8YFLogxK

U2 - 10.1002/wcms.1243

DO - 10.1002/wcms.1243

M3 - Article

AN - SCOPUS:84955437721

VL - 6

SP - 211

EP - 222

JO - Wiley Interdisciplinary Reviews: Computational Molecular Science

JF - Wiley Interdisciplinary Reviews: Computational Molecular Science

SN - 1759-0876

IS - 2

ER -