Extended spectrum β-lactamase (ESBL)-producing enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment

Research output: Contribution to journalReview article

210 Citations (Scopus)

Abstract

Extended spectrum β-lactamase (ESBL)-producing organisms pose unique challenges to clinical microbiologists, clinicians, infection control professionals and antibacterial-discovery scientists. ESBLs are enzymes capable of hydrolysing penicillins, broad-spectrum cephalosporins and monobactams, and are generally derived from TEM and SHV-type enzymes. ESBLs are often located on plasmids that are transferable from strain to strain and between bacterial species. Although the prevalence of ESBLs is not known, it is clearly increasing, and in many parts of the world 10-40% of strains of Escherichia coli and Klebsiella pneumoniae express ESBLs. ESBL-producing Enterobacteriaceae have been responsible for numerous outbreaks of infection throughout the world and pose challenging infection control issues. Clinical outcomes data indicate that ESBLs are clinically significant and, when detected, indicate the need for the use of appropriate antibacterial agents. Unfortunately, the laboratory detection of ESBLs can be complex and, at times, misleading. Antibacterial choice is often complicated by multi-resistance. Many ESBL-producing organisms also express AmpC β-lactamases and may be co-transferred with plasmids mediating aminoglycoside resistance. In addition, there is an increasing association between ESBL production and fluoroquinolone resistance. Although in in vitro tests ESBLs are inhibited by β-lactamase inhibitors such as clavulanic acid, the activity of β-lactam/β-lactamase inhibitor combination agents is influenced by the bacterial inoculum, dose administration regimen and specific type of ESBL present. Currently, carbapenems are regarded as the drugs of choice for treatment of infections caused by ESBL-producing organisms. Unfortunately, use of carbapenems has been associated with the emergence of carbapenem-resistant bacterial species such as Stenotrophomonas sp. or Pseudomonas sp.

Original languageEnglish (US)
Pages (from-to)353-365
Number of pages13
JournalDrugs
Volume63
Issue number4
DOIs
StatePublished - Mar 11 2003

Fingerprint

Drug therapy
Carbapenems
Enterobacteriaceae
Infection Control
Plasmids
Stenotrophomonas
Monobactams
Pharmaceutical Preparations
Lactams
Clavulanic Acid
Fluoroquinolones
Klebsiella pneumoniae
Aminoglycosides
Enzymes
Cephalosporins
Pseudomonas
Infection
Penicillins
Escherichia coli
Disease Outbreaks

ASJC Scopus subject areas

  • Pharmacology (medical)

Cite this

@article{7140dbca630d47358a9f3db6fa979b70,
title = "Extended spectrum β-lactamase (ESBL)-producing enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment",
abstract = "Extended spectrum β-lactamase (ESBL)-producing organisms pose unique challenges to clinical microbiologists, clinicians, infection control professionals and antibacterial-discovery scientists. ESBLs are enzymes capable of hydrolysing penicillins, broad-spectrum cephalosporins and monobactams, and are generally derived from TEM and SHV-type enzymes. ESBLs are often located on plasmids that are transferable from strain to strain and between bacterial species. Although the prevalence of ESBLs is not known, it is clearly increasing, and in many parts of the world 10-40{\%} of strains of Escherichia coli and Klebsiella pneumoniae express ESBLs. ESBL-producing Enterobacteriaceae have been responsible for numerous outbreaks of infection throughout the world and pose challenging infection control issues. Clinical outcomes data indicate that ESBLs are clinically significant and, when detected, indicate the need for the use of appropriate antibacterial agents. Unfortunately, the laboratory detection of ESBLs can be complex and, at times, misleading. Antibacterial choice is often complicated by multi-resistance. Many ESBL-producing organisms also express AmpC β-lactamases and may be co-transferred with plasmids mediating aminoglycoside resistance. In addition, there is an increasing association between ESBL production and fluoroquinolone resistance. Although in in vitro tests ESBLs are inhibited by β-lactamase inhibitors such as clavulanic acid, the activity of β-lactam/β-lactamase inhibitor combination agents is influenced by the bacterial inoculum, dose administration regimen and specific type of ESBL present. Currently, carbapenems are regarded as the drugs of choice for treatment of infections caused by ESBL-producing organisms. Unfortunately, use of carbapenems has been associated with the emergence of carbapenem-resistant bacterial species such as Stenotrophomonas sp. or Pseudomonas sp.",
author = "Rupp, {Mark Edmund} and Fey, {Paul D}",
year = "2003",
month = "3",
day = "11",
doi = "10.2165/00003495-200363040-00002",
language = "English (US)",
volume = "63",
pages = "353--365",
journal = "Drugs",
issn = "0012-6667",
publisher = "Adis International Ltd",
number = "4",

}

TY - JOUR

T1 - Extended spectrum β-lactamase (ESBL)-producing enterobacteriaceae

T2 - Considerations for diagnosis, prevention and drug treatment

AU - Rupp, Mark Edmund

AU - Fey, Paul D

PY - 2003/3/11

Y1 - 2003/3/11

N2 - Extended spectrum β-lactamase (ESBL)-producing organisms pose unique challenges to clinical microbiologists, clinicians, infection control professionals and antibacterial-discovery scientists. ESBLs are enzymes capable of hydrolysing penicillins, broad-spectrum cephalosporins and monobactams, and are generally derived from TEM and SHV-type enzymes. ESBLs are often located on plasmids that are transferable from strain to strain and between bacterial species. Although the prevalence of ESBLs is not known, it is clearly increasing, and in many parts of the world 10-40% of strains of Escherichia coli and Klebsiella pneumoniae express ESBLs. ESBL-producing Enterobacteriaceae have been responsible for numerous outbreaks of infection throughout the world and pose challenging infection control issues. Clinical outcomes data indicate that ESBLs are clinically significant and, when detected, indicate the need for the use of appropriate antibacterial agents. Unfortunately, the laboratory detection of ESBLs can be complex and, at times, misleading. Antibacterial choice is often complicated by multi-resistance. Many ESBL-producing organisms also express AmpC β-lactamases and may be co-transferred with plasmids mediating aminoglycoside resistance. In addition, there is an increasing association between ESBL production and fluoroquinolone resistance. Although in in vitro tests ESBLs are inhibited by β-lactamase inhibitors such as clavulanic acid, the activity of β-lactam/β-lactamase inhibitor combination agents is influenced by the bacterial inoculum, dose administration regimen and specific type of ESBL present. Currently, carbapenems are regarded as the drugs of choice for treatment of infections caused by ESBL-producing organisms. Unfortunately, use of carbapenems has been associated with the emergence of carbapenem-resistant bacterial species such as Stenotrophomonas sp. or Pseudomonas sp.

AB - Extended spectrum β-lactamase (ESBL)-producing organisms pose unique challenges to clinical microbiologists, clinicians, infection control professionals and antibacterial-discovery scientists. ESBLs are enzymes capable of hydrolysing penicillins, broad-spectrum cephalosporins and monobactams, and are generally derived from TEM and SHV-type enzymes. ESBLs are often located on plasmids that are transferable from strain to strain and between bacterial species. Although the prevalence of ESBLs is not known, it is clearly increasing, and in many parts of the world 10-40% of strains of Escherichia coli and Klebsiella pneumoniae express ESBLs. ESBL-producing Enterobacteriaceae have been responsible for numerous outbreaks of infection throughout the world and pose challenging infection control issues. Clinical outcomes data indicate that ESBLs are clinically significant and, when detected, indicate the need for the use of appropriate antibacterial agents. Unfortunately, the laboratory detection of ESBLs can be complex and, at times, misleading. Antibacterial choice is often complicated by multi-resistance. Many ESBL-producing organisms also express AmpC β-lactamases and may be co-transferred with plasmids mediating aminoglycoside resistance. In addition, there is an increasing association between ESBL production and fluoroquinolone resistance. Although in in vitro tests ESBLs are inhibited by β-lactamase inhibitors such as clavulanic acid, the activity of β-lactam/β-lactamase inhibitor combination agents is influenced by the bacterial inoculum, dose administration regimen and specific type of ESBL present. Currently, carbapenems are regarded as the drugs of choice for treatment of infections caused by ESBL-producing organisms. Unfortunately, use of carbapenems has been associated with the emergence of carbapenem-resistant bacterial species such as Stenotrophomonas sp. or Pseudomonas sp.

UR - http://www.scopus.com/inward/record.url?scp=0037282428&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037282428&partnerID=8YFLogxK

U2 - 10.2165/00003495-200363040-00002

DO - 10.2165/00003495-200363040-00002

M3 - Review article

C2 - 12558458

AN - SCOPUS:0037282428

VL - 63

SP - 353

EP - 365

JO - Drugs

JF - Drugs

SN - 0012-6667

IS - 4

ER -