Expression of costimulatory molecules in the bovine corpus luteum

Matthew J. Cannon, John S Davis, Joy L. Pate

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background: Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC) molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown. Methods: Bovine luteal tissue was collected during the early (day 5; day of estrus = day 0), mid (day 11-12), or late (day 18) luteal phase of the estrous cycle, and at 0, 0.5, 1, 4, 12 or 24 hours following administration of PGF2alpha to cows on day 10 of the estrous cycle. Northern analysis was used to measure CD80 or CD86 mRNA concentrations in luteal tissue samples. Mixed luteal parenchymal cell cultures and purified luteal endothelial cell cultures were prepared, and real-time RT-PCR was used to examine the presence of CD80 and CD86 mRNA in each culture type. Monoclonal antibodies to CD80 and CD86 were added to a mixed luteal parenchymal cell-T cell co-culture in vitro T cell proliferation assay to assess the functional significance of costimulatory molecules on activation of T lymphocytes by luteal parenchymal cells. Results: Northern analysis revealed CD80 and CD86 mR NAs in luteal tissue, with greatest steady-state concentrations at midcycle. CD80 and CD86 mRNAs were detected in mixed luteal parenchymal cell cultures, but only slight amounts of CD80 (and not CD86) mRNA were detected in cultures of luteal endothelial cells. Luteinizing hormone, PGF2alpha and TNF-alpha were without effect on concentrations of CD80 or CD86 mRNA in mixed luteal parenchymal cells cultures. Anti-CD80 or anti-CD86 monoclonal antibodies inhibited T cell proliferation in the in vitro T cell proliferation assay. Conclusion: It can be concluded from this study that parenchymal cells within the bovine CL express functional costimulatory molecules that facilitate interactions between with T cells, and these components of the antigen presentation pathway are expressed maximally in the midcycle CL.

Original languageEnglish (US)
Article number5
JournalReproductive Biology and Endocrinology
Volume5
DOIs
StatePublished - Mar 1 2007

Fingerprint

Luteal Cells
Corpus Luteum
T-Lymphocytes
Cell Culture Techniques
Messenger RNA
Major Histocompatibility Complex
Dinoprost
Estrous Cycle
Cell Proliferation
Endothelial Cells
Monoclonal Antibodies
Luteal Phase
Antigen Presentation
Estrus
Antigen-Presenting Cells
Cellular Structures
Luteinizing Hormone
Coculture Techniques
Real-Time Polymerase Chain Reaction
Tumor Necrosis Factor-alpha

ASJC Scopus subject areas

  • Reproductive Medicine
  • Endocrinology
  • Developmental Biology

Cite this

Expression of costimulatory molecules in the bovine corpus luteum. / Cannon, Matthew J.; Davis, John S; Pate, Joy L.

In: Reproductive Biology and Endocrinology, Vol. 5, 5, 01.03.2007.

Research output: Contribution to journalArticle

@article{3c456a41ee394b4ea48e16a9226e25dd,
title = "Expression of costimulatory molecules in the bovine corpus luteum",
abstract = "Background: Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC) molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown. Methods: Bovine luteal tissue was collected during the early (day 5; day of estrus = day 0), mid (day 11-12), or late (day 18) luteal phase of the estrous cycle, and at 0, 0.5, 1, 4, 12 or 24 hours following administration of PGF2alpha to cows on day 10 of the estrous cycle. Northern analysis was used to measure CD80 or CD86 mRNA concentrations in luteal tissue samples. Mixed luteal parenchymal cell cultures and purified luteal endothelial cell cultures were prepared, and real-time RT-PCR was used to examine the presence of CD80 and CD86 mRNA in each culture type. Monoclonal antibodies to CD80 and CD86 were added to a mixed luteal parenchymal cell-T cell co-culture in vitro T cell proliferation assay to assess the functional significance of costimulatory molecules on activation of T lymphocytes by luteal parenchymal cells. Results: Northern analysis revealed CD80 and CD86 mR NAs in luteal tissue, with greatest steady-state concentrations at midcycle. CD80 and CD86 mRNAs were detected in mixed luteal parenchymal cell cultures, but only slight amounts of CD80 (and not CD86) mRNA were detected in cultures of luteal endothelial cells. Luteinizing hormone, PGF2alpha and TNF-alpha were without effect on concentrations of CD80 or CD86 mRNA in mixed luteal parenchymal cells cultures. Anti-CD80 or anti-CD86 monoclonal antibodies inhibited T cell proliferation in the in vitro T cell proliferation assay. Conclusion: It can be concluded from this study that parenchymal cells within the bovine CL express functional costimulatory molecules that facilitate interactions between with T cells, and these components of the antigen presentation pathway are expressed maximally in the midcycle CL.",
author = "Cannon, {Matthew J.} and Davis, {John S} and Pate, {Joy L.}",
year = "2007",
month = "3",
day = "1",
doi = "10.1186/1477-7827-5-5",
language = "English (US)",
volume = "5",
journal = "Reproductive Biology and Endocrinology",
issn = "1477-7827",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Expression of costimulatory molecules in the bovine corpus luteum

AU - Cannon, Matthew J.

AU - Davis, John S

AU - Pate, Joy L.

PY - 2007/3/1

Y1 - 2007/3/1

N2 - Background: Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC) molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown. Methods: Bovine luteal tissue was collected during the early (day 5; day of estrus = day 0), mid (day 11-12), or late (day 18) luteal phase of the estrous cycle, and at 0, 0.5, 1, 4, 12 or 24 hours following administration of PGF2alpha to cows on day 10 of the estrous cycle. Northern analysis was used to measure CD80 or CD86 mRNA concentrations in luteal tissue samples. Mixed luteal parenchymal cell cultures and purified luteal endothelial cell cultures were prepared, and real-time RT-PCR was used to examine the presence of CD80 and CD86 mRNA in each culture type. Monoclonal antibodies to CD80 and CD86 were added to a mixed luteal parenchymal cell-T cell co-culture in vitro T cell proliferation assay to assess the functional significance of costimulatory molecules on activation of T lymphocytes by luteal parenchymal cells. Results: Northern analysis revealed CD80 and CD86 mR NAs in luteal tissue, with greatest steady-state concentrations at midcycle. CD80 and CD86 mRNAs were detected in mixed luteal parenchymal cell cultures, but only slight amounts of CD80 (and not CD86) mRNA were detected in cultures of luteal endothelial cells. Luteinizing hormone, PGF2alpha and TNF-alpha were without effect on concentrations of CD80 or CD86 mRNA in mixed luteal parenchymal cells cultures. Anti-CD80 or anti-CD86 monoclonal antibodies inhibited T cell proliferation in the in vitro T cell proliferation assay. Conclusion: It can be concluded from this study that parenchymal cells within the bovine CL express functional costimulatory molecules that facilitate interactions between with T cells, and these components of the antigen presentation pathway are expressed maximally in the midcycle CL.

AB - Background: Bovine luteal parenchymal cells express class II major histocompatibility complex (MHC) molecules and stimulate class II MHC-dependent activation of T cells in vitro. The ability of a class II MHC-expressing cell type to elicit a response from T cells in vivo is also dependent on expression of costimulatory molecules by the antigen presenting cell and delivery of a costimulatory signal to the T cell. Whether bovine luteal parenchymal cells express costimulatory molecules and can deliver the costimulatory signal is currently unknown. Methods: Bovine luteal tissue was collected during the early (day 5; day of estrus = day 0), mid (day 11-12), or late (day 18) luteal phase of the estrous cycle, and at 0, 0.5, 1, 4, 12 or 24 hours following administration of PGF2alpha to cows on day 10 of the estrous cycle. Northern analysis was used to measure CD80 or CD86 mRNA concentrations in luteal tissue samples. Mixed luteal parenchymal cell cultures and purified luteal endothelial cell cultures were prepared, and real-time RT-PCR was used to examine the presence of CD80 and CD86 mRNA in each culture type. Monoclonal antibodies to CD80 and CD86 were added to a mixed luteal parenchymal cell-T cell co-culture in vitro T cell proliferation assay to assess the functional significance of costimulatory molecules on activation of T lymphocytes by luteal parenchymal cells. Results: Northern analysis revealed CD80 and CD86 mR NAs in luteal tissue, with greatest steady-state concentrations at midcycle. CD80 and CD86 mRNAs were detected in mixed luteal parenchymal cell cultures, but only slight amounts of CD80 (and not CD86) mRNA were detected in cultures of luteal endothelial cells. Luteinizing hormone, PGF2alpha and TNF-alpha were without effect on concentrations of CD80 or CD86 mRNA in mixed luteal parenchymal cells cultures. Anti-CD80 or anti-CD86 monoclonal antibodies inhibited T cell proliferation in the in vitro T cell proliferation assay. Conclusion: It can be concluded from this study that parenchymal cells within the bovine CL express functional costimulatory molecules that facilitate interactions between with T cells, and these components of the antigen presentation pathway are expressed maximally in the midcycle CL.

UR - http://www.scopus.com/inward/record.url?scp=33847206036&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33847206036&partnerID=8YFLogxK

U2 - 10.1186/1477-7827-5-5

DO - 10.1186/1477-7827-5-5

M3 - Article

VL - 5

JO - Reproductive Biology and Endocrinology

JF - Reproductive Biology and Endocrinology

SN - 1477-7827

M1 - 5

ER -