Expression and Activity of the Signaling Molecules for Mitogen-Activated Protein Kinase Pathways in Human, Bovine, and Rat Lenses

David W Li, Jin Ping Liu, Juan Wang, Ying Wei Mao, Li Hui Hou

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

PURPOSE. The mitogen-activated protein kinase (MAPK) pathways play distinct roles in the lens. However, the expression patterns and activity levels of various components for these pathways have not been well-documented in vertebrate lenses, especially human lens. In the present study, the expressions and activities of extracellular signal-regulated kinase (ERK)-1/ 2/3, c-Jun NH2-terminal kinase (JNK)-1/2, p38 kinase, mitogen-activated protein kinase kinase (MEK)-1/2, and RAF1 were recorded in human, bovine, and rat lenses. METHODS. Human, bovine, and rat lenses were isolated from intact eyes. The epithelia and different layers of fiber cells were isolated from these lenses. Total proteins extracted from these samples were subject to analysis of the expression patterns and activity levels of the MAPKs and the activating kinases of ERK1/2. RESULTS. ERK1 and ERK2 were the most abundant MAPKs in terms of both protein and activity levels in all lenses. JNK1 and JNK2 were highly expressed in bovine lens, which differed from the pattern shared by human and rat lenses, p38 kinase was similarly expressed in bovine and rat lenses, but different from that in human lens. However, p38 kinase activity was exclusively detected in the epithelia. All lenses had MEK1/2 activity in their epithelia but the expression patterns of MEK1 and MEK2 differed in these lenses. RAF1 was expressed in the epithelia of all lenses, but its activity was detected only in rat lens. CONCLUSIONS. ERK1 and ERK2 are the most abundant MAPKs in the ocular lens, providing the basis for their multiple functions in lens development and pathogenesis. The dominant epithelial distribution of JNK1/2 and p38 kinase suggests that the lens epithelium is a major site for stress response. ERK1, p38 kinase, and PKCα can be used as molecular markers for aging.

Original languageEnglish (US)
Pages (from-to)5277-5286
Number of pages10
JournalInvestigative Ophthalmology and Visual Science
Volume44
Issue number12
DOIs
StatePublished - Dec 1 2003

Fingerprint

Mitogen-Activated Protein Kinases
Lenses
Epithelium
Phosphotransferases
Mitogen-Activated Protein Kinase 3
Mitogen-Activated Protein Kinase Kinases
MAP Kinase Kinase Kinase 1
Crystalline Lens
JNK Mitogen-Activated Protein Kinases
Mitogen-Activated Protein Kinase 1
Vertebrates

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Cite this

Expression and Activity of the Signaling Molecules for Mitogen-Activated Protein Kinase Pathways in Human, Bovine, and Rat Lenses. / Li, David W; Liu, Jin Ping; Wang, Juan; Mao, Ying Wei; Hou, Li Hui.

In: Investigative Ophthalmology and Visual Science, Vol. 44, No. 12, 01.12.2003, p. 5277-5286.

Research output: Contribution to journalArticle

Li, David W ; Liu, Jin Ping ; Wang, Juan ; Mao, Ying Wei ; Hou, Li Hui. / Expression and Activity of the Signaling Molecules for Mitogen-Activated Protein Kinase Pathways in Human, Bovine, and Rat Lenses. In: Investigative Ophthalmology and Visual Science. 2003 ; Vol. 44, No. 12. pp. 5277-5286.
@article{4568c15cf2d24ffabe471d98e2317298,
title = "Expression and Activity of the Signaling Molecules for Mitogen-Activated Protein Kinase Pathways in Human, Bovine, and Rat Lenses",
abstract = "PURPOSE. The mitogen-activated protein kinase (MAPK) pathways play distinct roles in the lens. However, the expression patterns and activity levels of various components for these pathways have not been well-documented in vertebrate lenses, especially human lens. In the present study, the expressions and activities of extracellular signal-regulated kinase (ERK)-1/ 2/3, c-Jun NH2-terminal kinase (JNK)-1/2, p38 kinase, mitogen-activated protein kinase kinase (MEK)-1/2, and RAF1 were recorded in human, bovine, and rat lenses. METHODS. Human, bovine, and rat lenses were isolated from intact eyes. The epithelia and different layers of fiber cells were isolated from these lenses. Total proteins extracted from these samples were subject to analysis of the expression patterns and activity levels of the MAPKs and the activating kinases of ERK1/2. RESULTS. ERK1 and ERK2 were the most abundant MAPKs in terms of both protein and activity levels in all lenses. JNK1 and JNK2 were highly expressed in bovine lens, which differed from the pattern shared by human and rat lenses, p38 kinase was similarly expressed in bovine and rat lenses, but different from that in human lens. However, p38 kinase activity was exclusively detected in the epithelia. All lenses had MEK1/2 activity in their epithelia but the expression patterns of MEK1 and MEK2 differed in these lenses. RAF1 was expressed in the epithelia of all lenses, but its activity was detected only in rat lens. CONCLUSIONS. ERK1 and ERK2 are the most abundant MAPKs in the ocular lens, providing the basis for their multiple functions in lens development and pathogenesis. The dominant epithelial distribution of JNK1/2 and p38 kinase suggests that the lens epithelium is a major site for stress response. ERK1, p38 kinase, and PKCα can be used as molecular markers for aging.",
author = "Li, {David W} and Liu, {Jin Ping} and Juan Wang and Mao, {Ying Wei} and Hou, {Li Hui}",
year = "2003",
month = "12",
day = "1",
doi = "10.1167/iovs.03-0348",
language = "English (US)",
volume = "44",
pages = "5277--5286",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "12",

}

TY - JOUR

T1 - Expression and Activity of the Signaling Molecules for Mitogen-Activated Protein Kinase Pathways in Human, Bovine, and Rat Lenses

AU - Li, David W

AU - Liu, Jin Ping

AU - Wang, Juan

AU - Mao, Ying Wei

AU - Hou, Li Hui

PY - 2003/12/1

Y1 - 2003/12/1

N2 - PURPOSE. The mitogen-activated protein kinase (MAPK) pathways play distinct roles in the lens. However, the expression patterns and activity levels of various components for these pathways have not been well-documented in vertebrate lenses, especially human lens. In the present study, the expressions and activities of extracellular signal-regulated kinase (ERK)-1/ 2/3, c-Jun NH2-terminal kinase (JNK)-1/2, p38 kinase, mitogen-activated protein kinase kinase (MEK)-1/2, and RAF1 were recorded in human, bovine, and rat lenses. METHODS. Human, bovine, and rat lenses were isolated from intact eyes. The epithelia and different layers of fiber cells were isolated from these lenses. Total proteins extracted from these samples were subject to analysis of the expression patterns and activity levels of the MAPKs and the activating kinases of ERK1/2. RESULTS. ERK1 and ERK2 were the most abundant MAPKs in terms of both protein and activity levels in all lenses. JNK1 and JNK2 were highly expressed in bovine lens, which differed from the pattern shared by human and rat lenses, p38 kinase was similarly expressed in bovine and rat lenses, but different from that in human lens. However, p38 kinase activity was exclusively detected in the epithelia. All lenses had MEK1/2 activity in their epithelia but the expression patterns of MEK1 and MEK2 differed in these lenses. RAF1 was expressed in the epithelia of all lenses, but its activity was detected only in rat lens. CONCLUSIONS. ERK1 and ERK2 are the most abundant MAPKs in the ocular lens, providing the basis for their multiple functions in lens development and pathogenesis. The dominant epithelial distribution of JNK1/2 and p38 kinase suggests that the lens epithelium is a major site for stress response. ERK1, p38 kinase, and PKCα can be used as molecular markers for aging.

AB - PURPOSE. The mitogen-activated protein kinase (MAPK) pathways play distinct roles in the lens. However, the expression patterns and activity levels of various components for these pathways have not been well-documented in vertebrate lenses, especially human lens. In the present study, the expressions and activities of extracellular signal-regulated kinase (ERK)-1/ 2/3, c-Jun NH2-terminal kinase (JNK)-1/2, p38 kinase, mitogen-activated protein kinase kinase (MEK)-1/2, and RAF1 were recorded in human, bovine, and rat lenses. METHODS. Human, bovine, and rat lenses were isolated from intact eyes. The epithelia and different layers of fiber cells were isolated from these lenses. Total proteins extracted from these samples were subject to analysis of the expression patterns and activity levels of the MAPKs and the activating kinases of ERK1/2. RESULTS. ERK1 and ERK2 were the most abundant MAPKs in terms of both protein and activity levels in all lenses. JNK1 and JNK2 were highly expressed in bovine lens, which differed from the pattern shared by human and rat lenses, p38 kinase was similarly expressed in bovine and rat lenses, but different from that in human lens. However, p38 kinase activity was exclusively detected in the epithelia. All lenses had MEK1/2 activity in their epithelia but the expression patterns of MEK1 and MEK2 differed in these lenses. RAF1 was expressed in the epithelia of all lenses, but its activity was detected only in rat lens. CONCLUSIONS. ERK1 and ERK2 are the most abundant MAPKs in the ocular lens, providing the basis for their multiple functions in lens development and pathogenesis. The dominant epithelial distribution of JNK1/2 and p38 kinase suggests that the lens epithelium is a major site for stress response. ERK1, p38 kinase, and PKCα can be used as molecular markers for aging.

UR - http://www.scopus.com/inward/record.url?scp=0344420040&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0344420040&partnerID=8YFLogxK

U2 - 10.1167/iovs.03-0348

DO - 10.1167/iovs.03-0348

M3 - Article

VL - 44

SP - 5277

EP - 5286

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 12

ER -