Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability

Mark P. Thomas, Daniel T Monaghan, Richard A. Morrisett

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5- phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARS may serve as epileptic foci, long term alterations in NMDAR function maybe expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

Original languageEnglish (US)
Pages (from-to)87-97
Number of pages11
JournalJournal of Pharmacology and Experimental Therapeutics
Volume287
Issue number1
StatePublished - Dec 1 1998

Fingerprint

N-Methyl-D-Aspartate Receptors
Ethanol
Alcohols
In Vitro Techniques
2-Amino-5-phosphonovalerate
D-Aspartic Acid
Pyramidal Cells
Excitatory Postsynaptic Potentials
Synaptic Transmission
In Situ Hybridization
Seizures
Stroke
Messenger RNA

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Cite this

Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability. / Thomas, Mark P.; Monaghan, Daniel T; Morrisett, Richard A.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 287, No. 1, 01.12.1998, p. 87-97.

Research output: Contribution to journalArticle

@article{b6b5ae62bfb9404f86ba852fd274cb22,
title = "Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability",
abstract = "Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40{\%}. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60{\%} and 89{\%}, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5- phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARS may serve as epileptic foci, long term alterations in NMDAR function maybe expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.",
author = "Thomas, {Mark P.} and Monaghan, {Daniel T} and Morrisett, {Richard A.}",
year = "1998",
month = "12",
day = "1",
language = "English (US)",
volume = "287",
pages = "87--97",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability

AU - Thomas, Mark P.

AU - Monaghan, Daniel T

AU - Morrisett, Richard A.

PY - 1998/12/1

Y1 - 1998/12/1

N2 - Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5- phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARS may serve as epileptic foci, long term alterations in NMDAR function maybe expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

AB - Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5- phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARS may serve as epileptic foci, long term alterations in NMDAR function maybe expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

UR - http://www.scopus.com/inward/record.url?scp=0032463605&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032463605&partnerID=8YFLogxK

M3 - Article

VL - 287

SP - 87

EP - 97

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 1

ER -