Evaluating equations estimating change in swine feed intake during heat and cold stress

R. R. White, P. S. Miller, M. D. Hanigan

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The objectives of this study were to evaluate heat stress feed intake models for growing swine using a data set assembled from the literature and to develop a series of new equations modeling the influence of the thermal environment and interactions between the thermal environmental and other factors on feed intake. A literature survey was conducted to identify studies assessing intake responses to temperature. The resulting data set comprised 35 studies containing 120 comparisons to thermoneutral intake. Intake as a fraction of thermoneutral intake (FFI) was the primary response variable, where a value of 1 represented no change from thermoneutral intake. The FFI predicted by NRC and a recent model from a meta-analysis (Renaudeau et al.,) were compared to observed values. New parameters for the NRC equation (NRCmod) were derived, and a series of new equations incorporating duration of exposure (TD), temperature cycling (TC), and floor type (TH) were also derived. Root-mean-square prediction error (RMSPE) and concordance correlation coefficients were used to evaluate all models. The RMSPE for the NRC model was 23.6 with mean and slope bias accounting for 12.6% and 51.1% of prediction error, respectively. The TD, TC, and TH models had reduced RMSPE compared with NRC: 12.9 for TD, 12.6 for TC, and 12.9 for TS. Substantial improvements were also made by refitting parameters (NRCmod; RMSPE 13.0%). In NRCmod, TD, TC, and TH, random error was the predominant source, accounting for over 97% of prediction error. The Renaudeau et al. model was also evaluated. Renaudeau et al. had relatively low RMSPE (22.3) for intake but higher RMSPE for FFI (22.6) than NRC, NRCmod, TD, TC, or TH. Additional parameters were derived for the Renaudeau et al. equation to account for housing system and diet characteristics. This adjustment reduced RMSPE of predicting feed intake (16.0) and FFI (16.3) and reduced systematic bias in the equation. This evaluation of equations highlights the effects of novel explanatory variables on feed intake during heat stress, and the comparison can be useful when selecting a model that best explains variability in feed intake responses to heat stress given available input data.

Original languageEnglish (US)
Pages (from-to)5395-5410
Number of pages16
JournalJournal of animal science
Volume93
Issue number11
DOIs
StatePublished - Nov 2015

Fingerprint

cold stress
heat stress
Swine
feed intake
Hot Temperature
swine
Temperature
prediction
temperature
Heat-Shock Response
heat
Meta-Analysis
Diet
meta-analysis
exposure duration
diet

Keywords

  • Cold stress
  • Feed intake
  • Heat stress
  • Pigs

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Cite this

Evaluating equations estimating change in swine feed intake during heat and cold stress. / White, R. R.; Miller, P. S.; Hanigan, M. D.

In: Journal of animal science, Vol. 93, No. 11, 11.2015, p. 5395-5410.

Research output: Contribution to journalArticle

@article{2c91acbcb5ba415ca66c507800e90822,
title = "Evaluating equations estimating change in swine feed intake during heat and cold stress",
abstract = "The objectives of this study were to evaluate heat stress feed intake models for growing swine using a data set assembled from the literature and to develop a series of new equations modeling the influence of the thermal environment and interactions between the thermal environmental and other factors on feed intake. A literature survey was conducted to identify studies assessing intake responses to temperature. The resulting data set comprised 35 studies containing 120 comparisons to thermoneutral intake. Intake as a fraction of thermoneutral intake (FFI) was the primary response variable, where a value of 1 represented no change from thermoneutral intake. The FFI predicted by NRC and a recent model from a meta-analysis (Renaudeau et al.,) were compared to observed values. New parameters for the NRC equation (NRCmod) were derived, and a series of new equations incorporating duration of exposure (TD), temperature cycling (TC), and floor type (TH) were also derived. Root-mean-square prediction error (RMSPE) and concordance correlation coefficients were used to evaluate all models. The RMSPE for the NRC model was 23.6 with mean and slope bias accounting for 12.6{\%} and 51.1{\%} of prediction error, respectively. The TD, TC, and TH models had reduced RMSPE compared with NRC: 12.9 for TD, 12.6 for TC, and 12.9 for TS. Substantial improvements were also made by refitting parameters (NRCmod; RMSPE 13.0{\%}). In NRCmod, TD, TC, and TH, random error was the predominant source, accounting for over 97{\%} of prediction error. The Renaudeau et al. model was also evaluated. Renaudeau et al. had relatively low RMSPE (22.3) for intake but higher RMSPE for FFI (22.6) than NRC, NRCmod, TD, TC, or TH. Additional parameters were derived for the Renaudeau et al. equation to account for housing system and diet characteristics. This adjustment reduced RMSPE of predicting feed intake (16.0) and FFI (16.3) and reduced systematic bias in the equation. This evaluation of equations highlights the effects of novel explanatory variables on feed intake during heat stress, and the comparison can be useful when selecting a model that best explains variability in feed intake responses to heat stress given available input data.",
keywords = "Cold stress, Feed intake, Heat stress, Pigs",
author = "White, {R. R.} and Miller, {P. S.} and Hanigan, {M. D.}",
year = "2015",
month = "11",
doi = "10.2527/jas.2015-9220",
language = "English (US)",
volume = "93",
pages = "5395--5410",
journal = "Journal of Animal Science",
issn = "0021-8812",
publisher = "American Society of Animal Science",
number = "11",

}

TY - JOUR

T1 - Evaluating equations estimating change in swine feed intake during heat and cold stress

AU - White, R. R.

AU - Miller, P. S.

AU - Hanigan, M. D.

PY - 2015/11

Y1 - 2015/11

N2 - The objectives of this study were to evaluate heat stress feed intake models for growing swine using a data set assembled from the literature and to develop a series of new equations modeling the influence of the thermal environment and interactions between the thermal environmental and other factors on feed intake. A literature survey was conducted to identify studies assessing intake responses to temperature. The resulting data set comprised 35 studies containing 120 comparisons to thermoneutral intake. Intake as a fraction of thermoneutral intake (FFI) was the primary response variable, where a value of 1 represented no change from thermoneutral intake. The FFI predicted by NRC and a recent model from a meta-analysis (Renaudeau et al.,) were compared to observed values. New parameters for the NRC equation (NRCmod) were derived, and a series of new equations incorporating duration of exposure (TD), temperature cycling (TC), and floor type (TH) were also derived. Root-mean-square prediction error (RMSPE) and concordance correlation coefficients were used to evaluate all models. The RMSPE for the NRC model was 23.6 with mean and slope bias accounting for 12.6% and 51.1% of prediction error, respectively. The TD, TC, and TH models had reduced RMSPE compared with NRC: 12.9 for TD, 12.6 for TC, and 12.9 for TS. Substantial improvements were also made by refitting parameters (NRCmod; RMSPE 13.0%). In NRCmod, TD, TC, and TH, random error was the predominant source, accounting for over 97% of prediction error. The Renaudeau et al. model was also evaluated. Renaudeau et al. had relatively low RMSPE (22.3) for intake but higher RMSPE for FFI (22.6) than NRC, NRCmod, TD, TC, or TH. Additional parameters were derived for the Renaudeau et al. equation to account for housing system and diet characteristics. This adjustment reduced RMSPE of predicting feed intake (16.0) and FFI (16.3) and reduced systematic bias in the equation. This evaluation of equations highlights the effects of novel explanatory variables on feed intake during heat stress, and the comparison can be useful when selecting a model that best explains variability in feed intake responses to heat stress given available input data.

AB - The objectives of this study were to evaluate heat stress feed intake models for growing swine using a data set assembled from the literature and to develop a series of new equations modeling the influence of the thermal environment and interactions between the thermal environmental and other factors on feed intake. A literature survey was conducted to identify studies assessing intake responses to temperature. The resulting data set comprised 35 studies containing 120 comparisons to thermoneutral intake. Intake as a fraction of thermoneutral intake (FFI) was the primary response variable, where a value of 1 represented no change from thermoneutral intake. The FFI predicted by NRC and a recent model from a meta-analysis (Renaudeau et al.,) were compared to observed values. New parameters for the NRC equation (NRCmod) were derived, and a series of new equations incorporating duration of exposure (TD), temperature cycling (TC), and floor type (TH) were also derived. Root-mean-square prediction error (RMSPE) and concordance correlation coefficients were used to evaluate all models. The RMSPE for the NRC model was 23.6 with mean and slope bias accounting for 12.6% and 51.1% of prediction error, respectively. The TD, TC, and TH models had reduced RMSPE compared with NRC: 12.9 for TD, 12.6 for TC, and 12.9 for TS. Substantial improvements were also made by refitting parameters (NRCmod; RMSPE 13.0%). In NRCmod, TD, TC, and TH, random error was the predominant source, accounting for over 97% of prediction error. The Renaudeau et al. model was also evaluated. Renaudeau et al. had relatively low RMSPE (22.3) for intake but higher RMSPE for FFI (22.6) than NRC, NRCmod, TD, TC, or TH. Additional parameters were derived for the Renaudeau et al. equation to account for housing system and diet characteristics. This adjustment reduced RMSPE of predicting feed intake (16.0) and FFI (16.3) and reduced systematic bias in the equation. This evaluation of equations highlights the effects of novel explanatory variables on feed intake during heat stress, and the comparison can be useful when selecting a model that best explains variability in feed intake responses to heat stress given available input data.

KW - Cold stress

KW - Feed intake

KW - Heat stress

KW - Pigs

UR - http://www.scopus.com/inward/record.url?scp=84975476132&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975476132&partnerID=8YFLogxK

U2 - 10.2527/jas.2015-9220

DO - 10.2527/jas.2015-9220

M3 - Article

C2 - 26641059

AN - SCOPUS:84975476132

VL - 93

SP - 5395

EP - 5410

JO - Journal of Animal Science

JF - Journal of Animal Science

SN - 0021-8812

IS - 11

ER -