Emergence of hearing in the chicken embryo

Timothy A. Jones, Sherri M. Jones, Kristina C. Paggett

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

It is commonly held that hearing generally begins on incubation day 12 (E12) in the chicken embryo (Gallus domesticus). However, little is known about the response properties of cochlear ganglion neurons for ages younger than E18. We studied ganglion neurons innervating the basilar papilla of embryos (E12-E18) and hatchlings (P13-P15). We asked first, when do primary afferent neurons begin to encode sounds? Second, when do afferents evidence frequency selectivity? Third, what range of characteristic frequencies (CFs) is represented in the late embryo? Finally, how does sound transfer from air to the cochlea affect responses in the embryo and hatchling? Responses to airborne sound were compared with responses to direct columella footplate stimulation of the cochlea. Cochlear ganglion neurons exhibited a profound insensitivity to sound from E12 to E16 (stages 39-42). Responses to sound and frequency selectivity emerged at about E15. Frequency selectivity matured rapidly from E16 to E18 (stages 42 and 44) to reflect a mature range of CFs (170-4,478 Hz) and response sensitivity to footplate stimulation. Limited high-frequency sound transfer from air to the cochlea restricted the response to airborne sound in the late embryo. Two periods of ontogeny are proposed. First is a prehearing period (roughly E12-E16) of endogenous cochlear signaling that provides neurotrophic support and guides normal developmental refinements in central binaural processing pathways followed by a period (roughly E16-E19) wherein the cochlea begins to detect and encode sound.

Original languageEnglish (US)
Pages (from-to)128-141
Number of pages14
JournalJournal of Neurophysiology
Volume96
Issue number1
DOIs
StatePublished - Jul 13 2006

Fingerprint

Cochlea
Hearing
Chickens
Embryonic Structures
Ganglia
Neurons
Air
Organ of Corti
Afferent Neurons

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology

Cite this

Emergence of hearing in the chicken embryo. / Jones, Timothy A.; Jones, Sherri M.; Paggett, Kristina C.

In: Journal of Neurophysiology, Vol. 96, No. 1, 13.07.2006, p. 128-141.

Research output: Contribution to journalArticle

@article{d39b8efb1dc3437096f6e04245a150f0,
title = "Emergence of hearing in the chicken embryo",
abstract = "It is commonly held that hearing generally begins on incubation day 12 (E12) in the chicken embryo (Gallus domesticus). However, little is known about the response properties of cochlear ganglion neurons for ages younger than E18. We studied ganglion neurons innervating the basilar papilla of embryos (E12-E18) and hatchlings (P13-P15). We asked first, when do primary afferent neurons begin to encode sounds? Second, when do afferents evidence frequency selectivity? Third, what range of characteristic frequencies (CFs) is represented in the late embryo? Finally, how does sound transfer from air to the cochlea affect responses in the embryo and hatchling? Responses to airborne sound were compared with responses to direct columella footplate stimulation of the cochlea. Cochlear ganglion neurons exhibited a profound insensitivity to sound from E12 to E16 (stages 39-42). Responses to sound and frequency selectivity emerged at about E15. Frequency selectivity matured rapidly from E16 to E18 (stages 42 and 44) to reflect a mature range of CFs (170-4,478 Hz) and response sensitivity to footplate stimulation. Limited high-frequency sound transfer from air to the cochlea restricted the response to airborne sound in the late embryo. Two periods of ontogeny are proposed. First is a prehearing period (roughly E12-E16) of endogenous cochlear signaling that provides neurotrophic support and guides normal developmental refinements in central binaural processing pathways followed by a period (roughly E16-E19) wherein the cochlea begins to detect and encode sound.",
author = "Jones, {Timothy A.} and Jones, {Sherri M.} and Paggett, {Kristina C.}",
year = "2006",
month = "7",
day = "13",
doi = "10.1152/jn.00599.2005",
language = "English (US)",
volume = "96",
pages = "128--141",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Emergence of hearing in the chicken embryo

AU - Jones, Timothy A.

AU - Jones, Sherri M.

AU - Paggett, Kristina C.

PY - 2006/7/13

Y1 - 2006/7/13

N2 - It is commonly held that hearing generally begins on incubation day 12 (E12) in the chicken embryo (Gallus domesticus). However, little is known about the response properties of cochlear ganglion neurons for ages younger than E18. We studied ganglion neurons innervating the basilar papilla of embryos (E12-E18) and hatchlings (P13-P15). We asked first, when do primary afferent neurons begin to encode sounds? Second, when do afferents evidence frequency selectivity? Third, what range of characteristic frequencies (CFs) is represented in the late embryo? Finally, how does sound transfer from air to the cochlea affect responses in the embryo and hatchling? Responses to airborne sound were compared with responses to direct columella footplate stimulation of the cochlea. Cochlear ganglion neurons exhibited a profound insensitivity to sound from E12 to E16 (stages 39-42). Responses to sound and frequency selectivity emerged at about E15. Frequency selectivity matured rapidly from E16 to E18 (stages 42 and 44) to reflect a mature range of CFs (170-4,478 Hz) and response sensitivity to footplate stimulation. Limited high-frequency sound transfer from air to the cochlea restricted the response to airborne sound in the late embryo. Two periods of ontogeny are proposed. First is a prehearing period (roughly E12-E16) of endogenous cochlear signaling that provides neurotrophic support and guides normal developmental refinements in central binaural processing pathways followed by a period (roughly E16-E19) wherein the cochlea begins to detect and encode sound.

AB - It is commonly held that hearing generally begins on incubation day 12 (E12) in the chicken embryo (Gallus domesticus). However, little is known about the response properties of cochlear ganglion neurons for ages younger than E18. We studied ganglion neurons innervating the basilar papilla of embryos (E12-E18) and hatchlings (P13-P15). We asked first, when do primary afferent neurons begin to encode sounds? Second, when do afferents evidence frequency selectivity? Third, what range of characteristic frequencies (CFs) is represented in the late embryo? Finally, how does sound transfer from air to the cochlea affect responses in the embryo and hatchling? Responses to airborne sound were compared with responses to direct columella footplate stimulation of the cochlea. Cochlear ganglion neurons exhibited a profound insensitivity to sound from E12 to E16 (stages 39-42). Responses to sound and frequency selectivity emerged at about E15. Frequency selectivity matured rapidly from E16 to E18 (stages 42 and 44) to reflect a mature range of CFs (170-4,478 Hz) and response sensitivity to footplate stimulation. Limited high-frequency sound transfer from air to the cochlea restricted the response to airborne sound in the late embryo. Two periods of ontogeny are proposed. First is a prehearing period (roughly E12-E16) of endogenous cochlear signaling that provides neurotrophic support and guides normal developmental refinements in central binaural processing pathways followed by a period (roughly E16-E19) wherein the cochlea begins to detect and encode sound.

UR - http://www.scopus.com/inward/record.url?scp=33745754641&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745754641&partnerID=8YFLogxK

U2 - 10.1152/jn.00599.2005

DO - 10.1152/jn.00599.2005

M3 - Article

C2 - 16598067

AN - SCOPUS:33745754641

VL - 96

SP - 128

EP - 141

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 1

ER -