Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro

Jingwei Xie, Chi Hwa Wang

Research output: Contribution to journalArticle

221 Citations (Scopus)

Abstract

Purpose. The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro. Methods. PLGA and an anticancer drug-paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines. Results. PLGA fibers with diameters of around several tens nanometers to 10 μm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 μg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol®. Conclusions. Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.

Original languageEnglish (US)
Pages (from-to)1817-1826
Number of pages10
JournalPharmaceutical Research
Volume23
Issue number8
DOIs
StatePublished - Aug 1 2006

Fingerprint

Nanofibers
Paclitaxel
Glioma
Pharmaceutical Preparations
Electrospinning
Cytotoxicity
Scanning
Encapsulation
Electron microscopes
Electrons
In Vitro Techniques
Photoelectron Spectroscopy
Fibers
High performance liquid chromatography
Weighing
Polymer solutions
polylactic acid-polyglycolic acid copolymer
Surface chemistry
Calorimeters
Drug delivery

Keywords

  • Electrospinning
  • Glioma
  • Microfibers
  • Nanofibers
  • PLGA
  • Paclitaxel

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry
  • Pharmacology (medical)

Cite this

Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. / Xie, Jingwei; Wang, Chi Hwa.

In: Pharmaceutical Research, Vol. 23, No. 8, 01.08.2006, p. 1817-1826.

Research output: Contribution to journalArticle

@article{41ad3eb357dc41fb9e59b8a6d85a0baf,
title = "Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro",
abstract = "Purpose. The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro. Methods. PLGA and an anticancer drug-paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines. Results. PLGA fibers with diameters of around several tens nanometers to 10 μm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90{\%}. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 μg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol{\circledR}. Conclusions. Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.",
keywords = "Electrospinning, Glioma, Microfibers, Nanofibers, PLGA, Paclitaxel",
author = "Jingwei Xie and Wang, {Chi Hwa}",
year = "2006",
month = "8",
day = "1",
doi = "10.1007/s11095-006-9036-z",
language = "English (US)",
volume = "23",
pages = "1817--1826",
journal = "Pharmaceutical Research",
issn = "0724-8741",
publisher = "Springer New York",
number = "8",

}

TY - JOUR

T1 - Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro

AU - Xie, Jingwei

AU - Wang, Chi Hwa

PY - 2006/8/1

Y1 - 2006/8/1

N2 - Purpose. The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro. Methods. PLGA and an anticancer drug-paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines. Results. PLGA fibers with diameters of around several tens nanometers to 10 μm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 μg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol®. Conclusions. Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.

AB - Purpose. The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro. Methods. PLGA and an anticancer drug-paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines. Results. PLGA fibers with diameters of around several tens nanometers to 10 μm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 μg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol®. Conclusions. Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.

KW - Electrospinning

KW - Glioma

KW - Microfibers

KW - Nanofibers

KW - PLGA

KW - Paclitaxel

UR - http://www.scopus.com/inward/record.url?scp=33746901298&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33746901298&partnerID=8YFLogxK

U2 - 10.1007/s11095-006-9036-z

DO - 10.1007/s11095-006-9036-z

M3 - Article

C2 - 16841195

AN - SCOPUS:33746901298

VL - 23

SP - 1817

EP - 1826

JO - Pharmaceutical Research

JF - Pharmaceutical Research

SN - 0724-8741

IS - 8

ER -