Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods

Guiling Zhang, Sun Peng, Yan Shang, Zhao Di Yang, Xiao C Zeng

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Electronic and transport properties of novel ferrocene based carbon nanotube (CNT) and boron-nitride nanotube (BNNT) nanopeapods, including Fe(Cp)2@CNT, Fe2(Cp)3@CNT, Fe(Cp)2@BNNT, and Fe2(Cp)3@BNNT (where Cp refers as cyclopentadiene), are investigated using the density functional theory and non-equilibrium Green's function methods. Computed electronic structures of the Fe(Cp)2@CNT and Fe2(Cp)3@CNT nanopeapods suggest that their electric conductivity is primarily contributed by the CNT π channel while the electron hopping from the core Fe(Cp)2 or Fe2(Cp)3 to the sheath CNT may have some contribution to the transport properties. Encapsulating Fe(Cp)2 into BNNT is more favorable for the electron conduction, owing to the splitting of the BNNT bandgap by the Fe(Cp)2 state. In contrast, introducing Fe2(Cp)3 into the BNNT is not beneficial to the conduction due to intramolecular electron transfer within the core Fe2(Cp)3 which can cause a trap effect. Because the transport channels can be changed by the applied bias voltage, the transport properties cannot be solely predicted from the electronic structures of infinite systems alone. For computing transport properties, we use two-probe device model systems with a finite-sized nanopeapod sandwiched between two CNT electrodes. Again, we find that encapsulating either Fe(Cp)2 or Fe2(Cp)3 into CNTs has little effect on the conductivity owing to the strong metallic character of the CNT sheath. Encapsulating Fe(Cp)2 into BNNTs can notably enhance electron conducting due to electron hopping from the core Fe(Cp)2 to the sheath BNNT. Encapsulating Fe2(Cp)3 into BNNTs, however, has little effect on the electron conductivity of BNNT nanopeapods due to the trap effect of the longer guest molecules. Hence, the length of guest molecules can effectively tune electronic and transport properties of the BNNT nanopeapods.

Original languageEnglish (US)
Pages (from-to)10017-10030
Number of pages14
JournalJournal of Materials Chemistry C
Volume2
Issue number46
DOIs
StatePublished - Dec 14 2014

Fingerprint

Carbon Nanotubes
Carbon nitride
Boron nitride
Electronic properties
Transport properties
Nanotubes
Carbon nanotubes
Electrons
Electronic structure
Electron transport properties
ferrocene
boron nitride
cyanogen
Cyclopentanes
Molecules
Bias voltage
Green's function
Density functional theory
Energy gap
Electrodes

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Chemistry

Cite this

Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. / Zhang, Guiling; Peng, Sun; Shang, Yan; Yang, Zhao Di; Zeng, Xiao C.

In: Journal of Materials Chemistry C, Vol. 2, No. 46, 14.12.2014, p. 10017-10030.

Research output: Contribution to journalArticle

Zhang, Guiling ; Peng, Sun ; Shang, Yan ; Yang, Zhao Di ; Zeng, Xiao C. / Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. In: Journal of Materials Chemistry C. 2014 ; Vol. 2, No. 46. pp. 10017-10030.
@article{de0232a2b914443ebdea5a9455ec885d,
title = "Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods",
abstract = "Electronic and transport properties of novel ferrocene based carbon nanotube (CNT) and boron-nitride nanotube (BNNT) nanopeapods, including Fe(Cp)2@CNT, Fe2(Cp)3@CNT, Fe(Cp)2@BNNT, and Fe2(Cp)3@BNNT (where Cp refers as cyclopentadiene), are investigated using the density functional theory and non-equilibrium Green's function methods. Computed electronic structures of the Fe(Cp)2@CNT and Fe2(Cp)3@CNT nanopeapods suggest that their electric conductivity is primarily contributed by the CNT π channel while the electron hopping from the core Fe(Cp)2 or Fe2(Cp)3 to the sheath CNT may have some contribution to the transport properties. Encapsulating Fe(Cp)2 into BNNT is more favorable for the electron conduction, owing to the splitting of the BNNT bandgap by the Fe(Cp)2 state. In contrast, introducing Fe2(Cp)3 into the BNNT is not beneficial to the conduction due to intramolecular electron transfer within the core Fe2(Cp)3 which can cause a trap effect. Because the transport channels can be changed by the applied bias voltage, the transport properties cannot be solely predicted from the electronic structures of infinite systems alone. For computing transport properties, we use two-probe device model systems with a finite-sized nanopeapod sandwiched between two CNT electrodes. Again, we find that encapsulating either Fe(Cp)2 or Fe2(Cp)3 into CNTs has little effect on the conductivity owing to the strong metallic character of the CNT sheath. Encapsulating Fe(Cp)2 into BNNTs can notably enhance electron conducting due to electron hopping from the core Fe(Cp)2 to the sheath BNNT. Encapsulating Fe2(Cp)3 into BNNTs, however, has little effect on the electron conductivity of BNNT nanopeapods due to the trap effect of the longer guest molecules. Hence, the length of guest molecules can effectively tune electronic and transport properties of the BNNT nanopeapods.",
author = "Guiling Zhang and Sun Peng and Yan Shang and Yang, {Zhao Di} and Zeng, {Xiao C}",
year = "2014",
month = "12",
day = "14",
doi = "10.1039/c4tc01906g",
language = "English (US)",
volume = "2",
pages = "10017--10030",
journal = "Journal of Materials Chemistry C",
issn = "2050-7526",
publisher = "Royal Society of Chemistry",
number = "46",

}

TY - JOUR

T1 - Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods

AU - Zhang, Guiling

AU - Peng, Sun

AU - Shang, Yan

AU - Yang, Zhao Di

AU - Zeng, Xiao C

PY - 2014/12/14

Y1 - 2014/12/14

N2 - Electronic and transport properties of novel ferrocene based carbon nanotube (CNT) and boron-nitride nanotube (BNNT) nanopeapods, including Fe(Cp)2@CNT, Fe2(Cp)3@CNT, Fe(Cp)2@BNNT, and Fe2(Cp)3@BNNT (where Cp refers as cyclopentadiene), are investigated using the density functional theory and non-equilibrium Green's function methods. Computed electronic structures of the Fe(Cp)2@CNT and Fe2(Cp)3@CNT nanopeapods suggest that their electric conductivity is primarily contributed by the CNT π channel while the electron hopping from the core Fe(Cp)2 or Fe2(Cp)3 to the sheath CNT may have some contribution to the transport properties. Encapsulating Fe(Cp)2 into BNNT is more favorable for the electron conduction, owing to the splitting of the BNNT bandgap by the Fe(Cp)2 state. In contrast, introducing Fe2(Cp)3 into the BNNT is not beneficial to the conduction due to intramolecular electron transfer within the core Fe2(Cp)3 which can cause a trap effect. Because the transport channels can be changed by the applied bias voltage, the transport properties cannot be solely predicted from the electronic structures of infinite systems alone. For computing transport properties, we use two-probe device model systems with a finite-sized nanopeapod sandwiched between two CNT electrodes. Again, we find that encapsulating either Fe(Cp)2 or Fe2(Cp)3 into CNTs has little effect on the conductivity owing to the strong metallic character of the CNT sheath. Encapsulating Fe(Cp)2 into BNNTs can notably enhance electron conducting due to electron hopping from the core Fe(Cp)2 to the sheath BNNT. Encapsulating Fe2(Cp)3 into BNNTs, however, has little effect on the electron conductivity of BNNT nanopeapods due to the trap effect of the longer guest molecules. Hence, the length of guest molecules can effectively tune electronic and transport properties of the BNNT nanopeapods.

AB - Electronic and transport properties of novel ferrocene based carbon nanotube (CNT) and boron-nitride nanotube (BNNT) nanopeapods, including Fe(Cp)2@CNT, Fe2(Cp)3@CNT, Fe(Cp)2@BNNT, and Fe2(Cp)3@BNNT (where Cp refers as cyclopentadiene), are investigated using the density functional theory and non-equilibrium Green's function methods. Computed electronic structures of the Fe(Cp)2@CNT and Fe2(Cp)3@CNT nanopeapods suggest that their electric conductivity is primarily contributed by the CNT π channel while the electron hopping from the core Fe(Cp)2 or Fe2(Cp)3 to the sheath CNT may have some contribution to the transport properties. Encapsulating Fe(Cp)2 into BNNT is more favorable for the electron conduction, owing to the splitting of the BNNT bandgap by the Fe(Cp)2 state. In contrast, introducing Fe2(Cp)3 into the BNNT is not beneficial to the conduction due to intramolecular electron transfer within the core Fe2(Cp)3 which can cause a trap effect. Because the transport channels can be changed by the applied bias voltage, the transport properties cannot be solely predicted from the electronic structures of infinite systems alone. For computing transport properties, we use two-probe device model systems with a finite-sized nanopeapod sandwiched between two CNT electrodes. Again, we find that encapsulating either Fe(Cp)2 or Fe2(Cp)3 into CNTs has little effect on the conductivity owing to the strong metallic character of the CNT sheath. Encapsulating Fe(Cp)2 into BNNTs can notably enhance electron conducting due to electron hopping from the core Fe(Cp)2 to the sheath BNNT. Encapsulating Fe2(Cp)3 into BNNTs, however, has little effect on the electron conductivity of BNNT nanopeapods due to the trap effect of the longer guest molecules. Hence, the length of guest molecules can effectively tune electronic and transport properties of the BNNT nanopeapods.

UR - http://www.scopus.com/inward/record.url?scp=84908659054&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908659054&partnerID=8YFLogxK

U2 - 10.1039/c4tc01906g

DO - 10.1039/c4tc01906g

M3 - Article

VL - 2

SP - 10017

EP - 10030

JO - Journal of Materials Chemistry C

JF - Journal of Materials Chemistry C

SN - 2050-7526

IS - 46

ER -