Abstract
Electrochemical characteristics of immobilized double-stranded DNA (dsDNA) on a Au electrode were studied as a function of coverage using a home-built optoelectrochemical method. The method allows probing of local redox processes on a 6 μm spot by measuring both differential reflectivity (SEED-R) and interferometry (SEED-I). The former is sensitive to redox ions that tend to adsorb to the electrode, while SEED-I is sensitive to nonadsorbing ions. The redox reaction maxima, Rmax and max from SEED-R and SEED-I, respectively, are linearly proportional to amperometric peak current, Imax. The DNA binding is measured by a redox active dye, methylene blue, that intercalates in dsDNA, leading to an Rmax. Concomitantly, the absence of max for [Fe(CN)6]4-/3- by SEED-I ensures that there is no leakage current from voids/defects in the alkanethiol passivation layer at the same spot of measurement. The binding was regulated electrochemically to obtain the binding fraction, f, ranging about three orders of magnitude. A remarkably sharp transition, f = fT = 1.25 × 10-3, was observed. Below fT, dsDNA molecules behaved as individual single-molecule nanoelectrodes. Above the crossover transition, Rmax, per dsDNA molecule dropped rapidly as f-1/2 toward a planar-like monolayer. The SEED-R peak at f ∼3.3 × 10-4 (∼270 dsDNA molecules) was (statistically) robust, corresponding to a responsivity of ∼0.45 zeptomoles of dsDNA/spot. Differential pulse voltammetry in the single-molecule regime estimated that the current per dsDNA molecule was ∼4.1 fA. Compared with published amperometric results, the reported semilogarithmic dependence on target concentration is in the f > fT regime.
Original language | English (US) |
---|---|
Pages (from-to) | 10492-10500 |
Number of pages | 9 |
Journal | Analytical chemistry |
Volume | 91 |
Issue number | 16 |
DOIs | |
State | Published - Aug 20 2019 |
Fingerprint
ASJC Scopus subject areas
- Analytical Chemistry
Cite this
Electrochemical characteristics of a DNA modified electrode as a function of percent binding. / Tevatia, Rahul; Prasad, Abhijeet; Saraf, Ravi F.
In: Analytical chemistry, Vol. 91, No. 16, 20.08.2019, p. 10492-10500.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Electrochemical characteristics of a DNA modified electrode as a function of percent binding
AU - Tevatia, Rahul
AU - Prasad, Abhijeet
AU - Saraf, Ravi F.
PY - 2019/8/20
Y1 - 2019/8/20
N2 - Electrochemical characteristics of immobilized double-stranded DNA (dsDNA) on a Au electrode were studied as a function of coverage using a home-built optoelectrochemical method. The method allows probing of local redox processes on a 6 μm spot by measuring both differential reflectivity (SEED-R) and interferometry (SEED-I). The former is sensitive to redox ions that tend to adsorb to the electrode, while SEED-I is sensitive to nonadsorbing ions. The redox reaction maxima, Rmax and max from SEED-R and SEED-I, respectively, are linearly proportional to amperometric peak current, Imax. The DNA binding is measured by a redox active dye, methylene blue, that intercalates in dsDNA, leading to an Rmax. Concomitantly, the absence of max for [Fe(CN)6]4-/3- by SEED-I ensures that there is no leakage current from voids/defects in the alkanethiol passivation layer at the same spot of measurement. The binding was regulated electrochemically to obtain the binding fraction, f, ranging about three orders of magnitude. A remarkably sharp transition, f = fT = 1.25 × 10-3, was observed. Below fT, dsDNA molecules behaved as individual single-molecule nanoelectrodes. Above the crossover transition, Rmax, per dsDNA molecule dropped rapidly as f-1/2 toward a planar-like monolayer. The SEED-R peak at f ∼3.3 × 10-4 (∼270 dsDNA molecules) was (statistically) robust, corresponding to a responsivity of ∼0.45 zeptomoles of dsDNA/spot. Differential pulse voltammetry in the single-molecule regime estimated that the current per dsDNA molecule was ∼4.1 fA. Compared with published amperometric results, the reported semilogarithmic dependence on target concentration is in the f > fT regime.
AB - Electrochemical characteristics of immobilized double-stranded DNA (dsDNA) on a Au electrode were studied as a function of coverage using a home-built optoelectrochemical method. The method allows probing of local redox processes on a 6 μm spot by measuring both differential reflectivity (SEED-R) and interferometry (SEED-I). The former is sensitive to redox ions that tend to adsorb to the electrode, while SEED-I is sensitive to nonadsorbing ions. The redox reaction maxima, Rmax and max from SEED-R and SEED-I, respectively, are linearly proportional to amperometric peak current, Imax. The DNA binding is measured by a redox active dye, methylene blue, that intercalates in dsDNA, leading to an Rmax. Concomitantly, the absence of max for [Fe(CN)6]4-/3- by SEED-I ensures that there is no leakage current from voids/defects in the alkanethiol passivation layer at the same spot of measurement. The binding was regulated electrochemically to obtain the binding fraction, f, ranging about three orders of magnitude. A remarkably sharp transition, f = fT = 1.25 × 10-3, was observed. Below fT, dsDNA molecules behaved as individual single-molecule nanoelectrodes. Above the crossover transition, Rmax, per dsDNA molecule dropped rapidly as f-1/2 toward a planar-like monolayer. The SEED-R peak at f ∼3.3 × 10-4 (∼270 dsDNA molecules) was (statistically) robust, corresponding to a responsivity of ∼0.45 zeptomoles of dsDNA/spot. Differential pulse voltammetry in the single-molecule regime estimated that the current per dsDNA molecule was ∼4.1 fA. Compared with published amperometric results, the reported semilogarithmic dependence on target concentration is in the f > fT regime.
UR - http://www.scopus.com/inward/record.url?scp=85072057977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072057977&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.9b01393
DO - 10.1021/acs.analchem.9b01393
M3 - Article
C2 - 31329418
AN - SCOPUS:85072057977
VL - 91
SP - 10492
EP - 10500
JO - Analytical Chemistry
JF - Analytical Chemistry
SN - 0003-2700
IS - 16
ER -