EGF mediated suppression of ROD photoreceptor differentiation is accompanied by a decrease in MASH-1 expression

Research output: Contribution to journalArticle

Abstract

PURPOSE: Mash-1 is acandidale transcription factor involved in the differentiation of the rod photoreceptor. Since Mash-1 and other members of bHLH class of transcription factors have been observed to be regulated in response to growth factors we tested the hypothesis that Mash-1 plays a role in the mediation of intracellular response during the specification of progenitors into rod photoreceptors. METHODS: The effect of EGF on retinal cell proliferation and differentiation was studied in culture of relinal explants obtained from E-18 embryos. The expiants were treated with EGF ( 10ng/ml) for three days. Cell-proliferation was assayed by tritiated thymidine incorporation. Immunocytochemical analyses were carried out using MashI and opsin antibodies. Mash-1 and opsin transcript levels were analyzed by RTPCR. RESULTS: Treatment of retinal expiants with EGF led to cell proliferation These proliferating cells were predominantly localized in the outer neuroblastic layer which harbors rod precursors. Mash-I positive cells, which are also preferentially localized in the outer neuroblastic layer in the E-18 retina, decreased in response to EGF treatment. The decrease in Mash-1 expression was accompanied by a decrease in opsin immunoreactivity and opsin transcript levels. Withdrawal of EGF from the culture led to an increase in Mash-l immunoreactivity and transcript levels. Similar increases in opsin immunoreactivity and transcript levels were observed following EGF withdrawal. CONCLUSIONS: In retinal explant culture, EOF promotes proliferation of progenitors at the expense of their differentiation into rod photoreceptors. The concomitant decrease in Mash-l and opsin expression in the presence of EGF and their increase following EGF withdrawal suggest that Mash-1 may be involved in the EGF mediated suppression of rod photoreceptur differentiation. Supported by NIH grant EY 10313. NONE.

Original languageEnglish (US)
JournalInvestigative Ophthalmology and Visual Science
Volume38
Issue number4
StatePublished - Dec 1 1997

Fingerprint

Epidermal Growth Factor
Opsins
Retinal Rod Photoreceptor Cells
Cell Proliferation
Basic Helix-Loop-Helix Transcription Factors
Organized Financing
Thymidine
Retina
Cell Differentiation
Intercellular Signaling Peptides and Proteins
Transcription Factors
Embryonic Structures
Antibodies

ASJC Scopus subject areas

  • Ophthalmology

Cite this

@article{28036dfdce954828aa7655dc836f8278,
title = "EGF mediated suppression of ROD photoreceptor differentiation is accompanied by a decrease in MASH-1 expression",
abstract = "PURPOSE: Mash-1 is acandidale transcription factor involved in the differentiation of the rod photoreceptor. Since Mash-1 and other members of bHLH class of transcription factors have been observed to be regulated in response to growth factors we tested the hypothesis that Mash-1 plays a role in the mediation of intracellular response during the specification of progenitors into rod photoreceptors. METHODS: The effect of EGF on retinal cell proliferation and differentiation was studied in culture of relinal explants obtained from E-18 embryos. The expiants were treated with EGF ( 10ng/ml) for three days. Cell-proliferation was assayed by tritiated thymidine incorporation. Immunocytochemical analyses were carried out using MashI and opsin antibodies. Mash-1 and opsin transcript levels were analyzed by RTPCR. RESULTS: Treatment of retinal expiants with EGF led to cell proliferation These proliferating cells were predominantly localized in the outer neuroblastic layer which harbors rod precursors. Mash-I positive cells, which are also preferentially localized in the outer neuroblastic layer in the E-18 retina, decreased in response to EGF treatment. The decrease in Mash-1 expression was accompanied by a decrease in opsin immunoreactivity and opsin transcript levels. Withdrawal of EGF from the culture led to an increase in Mash-l immunoreactivity and transcript levels. Similar increases in opsin immunoreactivity and transcript levels were observed following EGF withdrawal. CONCLUSIONS: In retinal explant culture, EOF promotes proliferation of progenitors at the expense of their differentiation into rod photoreceptors. The concomitant decrease in Mash-l and opsin expression in the presence of EGF and their increase following EGF withdrawal suggest that Mash-1 may be involved in the EGF mediated suppression of rod photoreceptur differentiation. Supported by NIH grant EY 10313. NONE.",
author = "Iqbal Ahmad",
year = "1997",
month = "12",
day = "1",
language = "English (US)",
volume = "38",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "4",

}

TY - JOUR

T1 - EGF mediated suppression of ROD photoreceptor differentiation is accompanied by a decrease in MASH-1 expression

AU - Ahmad, Iqbal

PY - 1997/12/1

Y1 - 1997/12/1

N2 - PURPOSE: Mash-1 is acandidale transcription factor involved in the differentiation of the rod photoreceptor. Since Mash-1 and other members of bHLH class of transcription factors have been observed to be regulated in response to growth factors we tested the hypothesis that Mash-1 plays a role in the mediation of intracellular response during the specification of progenitors into rod photoreceptors. METHODS: The effect of EGF on retinal cell proliferation and differentiation was studied in culture of relinal explants obtained from E-18 embryos. The expiants were treated with EGF ( 10ng/ml) for three days. Cell-proliferation was assayed by tritiated thymidine incorporation. Immunocytochemical analyses were carried out using MashI and opsin antibodies. Mash-1 and opsin transcript levels were analyzed by RTPCR. RESULTS: Treatment of retinal expiants with EGF led to cell proliferation These proliferating cells were predominantly localized in the outer neuroblastic layer which harbors rod precursors. Mash-I positive cells, which are also preferentially localized in the outer neuroblastic layer in the E-18 retina, decreased in response to EGF treatment. The decrease in Mash-1 expression was accompanied by a decrease in opsin immunoreactivity and opsin transcript levels. Withdrawal of EGF from the culture led to an increase in Mash-l immunoreactivity and transcript levels. Similar increases in opsin immunoreactivity and transcript levels were observed following EGF withdrawal. CONCLUSIONS: In retinal explant culture, EOF promotes proliferation of progenitors at the expense of their differentiation into rod photoreceptors. The concomitant decrease in Mash-l and opsin expression in the presence of EGF and their increase following EGF withdrawal suggest that Mash-1 may be involved in the EGF mediated suppression of rod photoreceptur differentiation. Supported by NIH grant EY 10313. NONE.

AB - PURPOSE: Mash-1 is acandidale transcription factor involved in the differentiation of the rod photoreceptor. Since Mash-1 and other members of bHLH class of transcription factors have been observed to be regulated in response to growth factors we tested the hypothesis that Mash-1 plays a role in the mediation of intracellular response during the specification of progenitors into rod photoreceptors. METHODS: The effect of EGF on retinal cell proliferation and differentiation was studied in culture of relinal explants obtained from E-18 embryos. The expiants were treated with EGF ( 10ng/ml) for three days. Cell-proliferation was assayed by tritiated thymidine incorporation. Immunocytochemical analyses were carried out using MashI and opsin antibodies. Mash-1 and opsin transcript levels were analyzed by RTPCR. RESULTS: Treatment of retinal expiants with EGF led to cell proliferation These proliferating cells were predominantly localized in the outer neuroblastic layer which harbors rod precursors. Mash-I positive cells, which are also preferentially localized in the outer neuroblastic layer in the E-18 retina, decreased in response to EGF treatment. The decrease in Mash-1 expression was accompanied by a decrease in opsin immunoreactivity and opsin transcript levels. Withdrawal of EGF from the culture led to an increase in Mash-l immunoreactivity and transcript levels. Similar increases in opsin immunoreactivity and transcript levels were observed following EGF withdrawal. CONCLUSIONS: In retinal explant culture, EOF promotes proliferation of progenitors at the expense of their differentiation into rod photoreceptors. The concomitant decrease in Mash-l and opsin expression in the presence of EGF and their increase following EGF withdrawal suggest that Mash-1 may be involved in the EGF mediated suppression of rod photoreceptur differentiation. Supported by NIH grant EY 10313. NONE.

UR - http://www.scopus.com/inward/record.url?scp=33749116169&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749116169&partnerID=8YFLogxK

M3 - Article

VL - 38

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 4

ER -