Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function

Mitchell Kuss, Jiyoung Kim, Dianjun Qi, Shaohua Wu, Yuguo Lei, Soonkyu Chung, Bin Duan

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted brown adipogenic differentiation and metabolic activity. We further 3D bioprinted brown and white adipose progenitors within hydrogel-based bioink with controllable physicochemical properties and evaluated the cell responses in 3D bioprinted environments. We used soft, stiff, and stiff-porous constructs to encapsulate the cells. All three types had high cell viability and allowed for varying levels of function for both white and brown adipocytes. We found that the soft hydrogel constructs promoted white adipogenesis, while the stiff-porous hydrogel constructs improved both white and brown adipogenesis and were the optimal condition for promoting brown adipogenesis. Consistently, stiff-porous hydrogel constructs showed higher metabolic activities than stiff hydrogel constructs, as assessed by 2-deoxy glucose uptake (2-DOG) and oxygen consumption rate (OCR). These findings show that the physicochemical environments affect the brown adipogenesis and metabolic function, and further tuning will be able to optimize their functions. Our results also demonstrate that 3D bioprinting of brown adipose tissues with clinically relevant size and metabolic activity has the potential to be a viable option in the treatment of obesity and type 2 diabetes. Statement of Significance: One promising strategy for the treatment or prevention of obesity-mediated health complications is augmenting brown adipose tissues (BAT), which is a specialized fat that actively dissipate energy in the form of heat and maintain energy balance. In this study, we determined how pre-exposing human brown adipose progenitors (BAP) to angiogenic factors in 2D and how bioprinted microenvironments in 3D affected brown adipogenic differentiation and metabolic activity. We demonstrated that white and brown adipogenesis, and thermogenesis were regulated by tuning the bioprintable matrix stiffness and construct structure. This study not only unveils the interaction between BAP and 3D physiological microenvironments, but also presents a novel tissue engineered strategy to manage obesity and other related metabolic disorders.

Original languageEnglish (US)
Pages (from-to)486-495
Number of pages10
JournalActa Biomaterialia
Volume71
DOIs
StatePublished - Apr 15 2018

Fingerprint

Brown Adipocytes
Adipogenesis
Hydrogels
Hydrogel
Tissue
Brown Adipose Tissue
Obesity
Angiogenesis Inducing Agents
Oils and fats
Tuning
Fats
Health
Bioprinting
Stiffness matrix
White Adipocytes
Medical problems
Energy balance
Glucose
Thermogenesis
Cells

Keywords

  • Brown adipocytes
  • Obesity
  • Porosity
  • Stiffness
  • Tissue engineering

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Cite this

Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function. / Kuss, Mitchell; Kim, Jiyoung; Qi, Dianjun; Wu, Shaohua; Lei, Yuguo; Chung, Soonkyu; Duan, Bin.

In: Acta Biomaterialia, Vol. 71, 15.04.2018, p. 486-495.

Research output: Contribution to journalArticle

@article{ef7917806ce840ea935787ab270072c7,
title = "Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function",
abstract = "Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted brown adipogenic differentiation and metabolic activity. We further 3D bioprinted brown and white adipose progenitors within hydrogel-based bioink with controllable physicochemical properties and evaluated the cell responses in 3D bioprinted environments. We used soft, stiff, and stiff-porous constructs to encapsulate the cells. All three types had high cell viability and allowed for varying levels of function for both white and brown adipocytes. We found that the soft hydrogel constructs promoted white adipogenesis, while the stiff-porous hydrogel constructs improved both white and brown adipogenesis and were the optimal condition for promoting brown adipogenesis. Consistently, stiff-porous hydrogel constructs showed higher metabolic activities than stiff hydrogel constructs, as assessed by 2-deoxy glucose uptake (2-DOG) and oxygen consumption rate (OCR). These findings show that the physicochemical environments affect the brown adipogenesis and metabolic function, and further tuning will be able to optimize their functions. Our results also demonstrate that 3D bioprinting of brown adipose tissues with clinically relevant size and metabolic activity has the potential to be a viable option in the treatment of obesity and type 2 diabetes. Statement of Significance: One promising strategy for the treatment or prevention of obesity-mediated health complications is augmenting brown adipose tissues (BAT), which is a specialized fat that actively dissipate energy in the form of heat and maintain energy balance. In this study, we determined how pre-exposing human brown adipose progenitors (BAP) to angiogenic factors in 2D and how bioprinted microenvironments in 3D affected brown adipogenic differentiation and metabolic activity. We demonstrated that white and brown adipogenesis, and thermogenesis were regulated by tuning the bioprintable matrix stiffness and construct structure. This study not only unveils the interaction between BAP and 3D physiological microenvironments, but also presents a novel tissue engineered strategy to manage obesity and other related metabolic disorders.",
keywords = "Brown adipocytes, Obesity, Porosity, Stiffness, Tissue engineering",
author = "Mitchell Kuss and Jiyoung Kim and Dianjun Qi and Shaohua Wu and Yuguo Lei and Soonkyu Chung and Bin Duan",
year = "2018",
month = "4",
day = "15",
doi = "10.1016/j.actbio.2018.03.021",
language = "English (US)",
volume = "71",
pages = "486--495",
journal = "Acta Biomaterialia",
issn = "1742-7061",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function

AU - Kuss, Mitchell

AU - Kim, Jiyoung

AU - Qi, Dianjun

AU - Wu, Shaohua

AU - Lei, Yuguo

AU - Chung, Soonkyu

AU - Duan, Bin

PY - 2018/4/15

Y1 - 2018/4/15

N2 - Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted brown adipogenic differentiation and metabolic activity. We further 3D bioprinted brown and white adipose progenitors within hydrogel-based bioink with controllable physicochemical properties and evaluated the cell responses in 3D bioprinted environments. We used soft, stiff, and stiff-porous constructs to encapsulate the cells. All three types had high cell viability and allowed for varying levels of function for both white and brown adipocytes. We found that the soft hydrogel constructs promoted white adipogenesis, while the stiff-porous hydrogel constructs improved both white and brown adipogenesis and were the optimal condition for promoting brown adipogenesis. Consistently, stiff-porous hydrogel constructs showed higher metabolic activities than stiff hydrogel constructs, as assessed by 2-deoxy glucose uptake (2-DOG) and oxygen consumption rate (OCR). These findings show that the physicochemical environments affect the brown adipogenesis and metabolic function, and further tuning will be able to optimize their functions. Our results also demonstrate that 3D bioprinting of brown adipose tissues with clinically relevant size and metabolic activity has the potential to be a viable option in the treatment of obesity and type 2 diabetes. Statement of Significance: One promising strategy for the treatment or prevention of obesity-mediated health complications is augmenting brown adipose tissues (BAT), which is a specialized fat that actively dissipate energy in the form of heat and maintain energy balance. In this study, we determined how pre-exposing human brown adipose progenitors (BAP) to angiogenic factors in 2D and how bioprinted microenvironments in 3D affected brown adipogenic differentiation and metabolic activity. We demonstrated that white and brown adipogenesis, and thermogenesis were regulated by tuning the bioprintable matrix stiffness and construct structure. This study not only unveils the interaction between BAP and 3D physiological microenvironments, but also presents a novel tissue engineered strategy to manage obesity and other related metabolic disorders.

AB - Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted brown adipogenic differentiation and metabolic activity. We further 3D bioprinted brown and white adipose progenitors within hydrogel-based bioink with controllable physicochemical properties and evaluated the cell responses in 3D bioprinted environments. We used soft, stiff, and stiff-porous constructs to encapsulate the cells. All three types had high cell viability and allowed for varying levels of function for both white and brown adipocytes. We found that the soft hydrogel constructs promoted white adipogenesis, while the stiff-porous hydrogel constructs improved both white and brown adipogenesis and were the optimal condition for promoting brown adipogenesis. Consistently, stiff-porous hydrogel constructs showed higher metabolic activities than stiff hydrogel constructs, as assessed by 2-deoxy glucose uptake (2-DOG) and oxygen consumption rate (OCR). These findings show that the physicochemical environments affect the brown adipogenesis and metabolic function, and further tuning will be able to optimize their functions. Our results also demonstrate that 3D bioprinting of brown adipose tissues with clinically relevant size and metabolic activity has the potential to be a viable option in the treatment of obesity and type 2 diabetes. Statement of Significance: One promising strategy for the treatment or prevention of obesity-mediated health complications is augmenting brown adipose tissues (BAT), which is a specialized fat that actively dissipate energy in the form of heat and maintain energy balance. In this study, we determined how pre-exposing human brown adipose progenitors (BAP) to angiogenic factors in 2D and how bioprinted microenvironments in 3D affected brown adipogenic differentiation and metabolic activity. We demonstrated that white and brown adipogenesis, and thermogenesis were regulated by tuning the bioprintable matrix stiffness and construct structure. This study not only unveils the interaction between BAP and 3D physiological microenvironments, but also presents a novel tissue engineered strategy to manage obesity and other related metabolic disorders.

KW - Brown adipocytes

KW - Obesity

KW - Porosity

KW - Stiffness

KW - Tissue engineering

UR - http://www.scopus.com/inward/record.url?scp=85044325431&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044325431&partnerID=8YFLogxK

U2 - 10.1016/j.actbio.2018.03.021

DO - 10.1016/j.actbio.2018.03.021

M3 - Article

C2 - 29555462

AN - SCOPUS:85044325431

VL - 71

SP - 486

EP - 495

JO - Acta Biomaterialia

JF - Acta Biomaterialia

SN - 1742-7061

ER -