Effects of Salmonella enterica serovars Typhimurium (ST) and Choleraesuis (SC) on chemokine and cytokine expression in swine ileum and jejunal epithelial cells

K. A. Skjolaas, Thomas E Burkey, S. S. Dritz, J. E. Minton

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

The gastrointestinal epithelium represents a barrier to potentially invasive enteric pathogens, maintains a role in innate immune surveillance, and is a source of both chemokine and cytokine chemotactic mediators in response to bacterial invasion. In the current study, we evaluated cytokine and chemokine mediators known to regulate movement of macrophages (macrophage migration inhibitory factor; MIF), neutrophils (IL8), dendritic cells (CCL20), and epithelial remodeling (osteopontin; OPN) in response to invasive swine enteropathogens Salmonella enterica serovar Typhimurium (ST) or Choleraesuis (SC). For the in vivo experiment, weaned pigs served as uninfected controls (0 h) or were given 3 × 109 CFU ST orally. Pigs were sacrificed at 8, 24, 48, and 144 h after inoculation and total RNA was extracted from defined segments of proximal (PI) and distal (DI) ileum. Relative expression of MIF and OPN were not affected by ST. IL8 expression was increased numerically (P = 0.17 for the interaction term) at 24 and 144 h in the PI and these increases accounted for greater expression in the PI relative to the DI (P < 0.05). Relative expression of CCL20 was increased at 24 h after ST (P < 0.05). Next, we evaluated the time course of MIF, IL8, CCL20, and OPN mRNA expression induced by application of lipopolysaccharide (LPS), ST or SC in vitro using pig jejunal epithelial cells (IPEC-J2). Cells were grown to confluency on permeable membranes, and treated apically with LPS (10 ng/mL), ST or SC (108/well). After 1 h, cells were washed to remove LPS or extracellular bacteria, and media containing gentamicin was added to kill remaining extracellular bacteria. Media and RNA were collected at 1.5, 3, and 6 h after treatment. MIF mRNA was not affected by LPS or bacterial treatment. Similarly, IL8 expression was not affected by LPS, but was increased by ST and SC relative to controls at 1.5 and 3 h post exposure (P < 0.05 for all comparisons). Treatment with SC increased CCL20 mRNA relative to controls at 3 h (P < 0.05), while ST increased CCL20 at 1.5, 3, and 6 h with maximal expression at 6 h (P < 0.05 for all comparisons). ST and SC increased polarized IL8 secretion. Our data demonstrate that invasive bacterial pathogens in the pig gastrointestinal tract trigger upregulation of selected cytokine and chemokine mediators, but serovars of Salmonella elicited differing patterns of activation in vitro.

Original languageEnglish (US)
Pages (from-to)199-209
Number of pages11
JournalVeterinary Immunology and Immunopathology
Volume111
Issue number3-4
DOIs
StatePublished - Jun 15 2006

Fingerprint

Salmonella choleraesuis Choleraesuis
Salmonella enterica
chemokines
Ileum
Chemokines
Salmonella Typhimurium
ileum
serotypes
epithelial cells
cytokines
Swine
Epithelial Cells
Cytokines
swine
lipopolysaccharides
Interleukin-8
Lipopolysaccharides
Messenger RNA
RNA
osteopontin

Keywords

  • Chemokines
  • Cytokines
  • Gut
  • Salmonella enterica
  • Swine

ASJC Scopus subject areas

  • Immunology
  • veterinary(all)

Cite this

Effects of Salmonella enterica serovars Typhimurium (ST) and Choleraesuis (SC) on chemokine and cytokine expression in swine ileum and jejunal epithelial cells. / Skjolaas, K. A.; Burkey, Thomas E; Dritz, S. S.; Minton, J. E.

In: Veterinary Immunology and Immunopathology, Vol. 111, No. 3-4, 15.06.2006, p. 199-209.

Research output: Contribution to journalArticle

@article{115babc685e0420eac571e169c3005df,
title = "Effects of Salmonella enterica serovars Typhimurium (ST) and Choleraesuis (SC) on chemokine and cytokine expression in swine ileum and jejunal epithelial cells",
abstract = "The gastrointestinal epithelium represents a barrier to potentially invasive enteric pathogens, maintains a role in innate immune surveillance, and is a source of both chemokine and cytokine chemotactic mediators in response to bacterial invasion. In the current study, we evaluated cytokine and chemokine mediators known to regulate movement of macrophages (macrophage migration inhibitory factor; MIF), neutrophils (IL8), dendritic cells (CCL20), and epithelial remodeling (osteopontin; OPN) in response to invasive swine enteropathogens Salmonella enterica serovar Typhimurium (ST) or Choleraesuis (SC). For the in vivo experiment, weaned pigs served as uninfected controls (0 h) or were given 3 × 109 CFU ST orally. Pigs were sacrificed at 8, 24, 48, and 144 h after inoculation and total RNA was extracted from defined segments of proximal (PI) and distal (DI) ileum. Relative expression of MIF and OPN were not affected by ST. IL8 expression was increased numerically (P = 0.17 for the interaction term) at 24 and 144 h in the PI and these increases accounted for greater expression in the PI relative to the DI (P < 0.05). Relative expression of CCL20 was increased at 24 h after ST (P < 0.05). Next, we evaluated the time course of MIF, IL8, CCL20, and OPN mRNA expression induced by application of lipopolysaccharide (LPS), ST or SC in vitro using pig jejunal epithelial cells (IPEC-J2). Cells were grown to confluency on permeable membranes, and treated apically with LPS (10 ng/mL), ST or SC (108/well). After 1 h, cells were washed to remove LPS or extracellular bacteria, and media containing gentamicin was added to kill remaining extracellular bacteria. Media and RNA were collected at 1.5, 3, and 6 h after treatment. MIF mRNA was not affected by LPS or bacterial treatment. Similarly, IL8 expression was not affected by LPS, but was increased by ST and SC relative to controls at 1.5 and 3 h post exposure (P < 0.05 for all comparisons). Treatment with SC increased CCL20 mRNA relative to controls at 3 h (P < 0.05), while ST increased CCL20 at 1.5, 3, and 6 h with maximal expression at 6 h (P < 0.05 for all comparisons). ST and SC increased polarized IL8 secretion. Our data demonstrate that invasive bacterial pathogens in the pig gastrointestinal tract trigger upregulation of selected cytokine and chemokine mediators, but serovars of Salmonella elicited differing patterns of activation in vitro.",
keywords = "Chemokines, Cytokines, Gut, Salmonella enterica, Swine",
author = "Skjolaas, {K. A.} and Burkey, {Thomas E} and Dritz, {S. S.} and Minton, {J. E.}",
year = "2006",
month = "6",
day = "15",
doi = "10.1016/j.vetimm.2006.01.002",
language = "English (US)",
volume = "111",
pages = "199--209",
journal = "Veterinary Immunology and Immunopathology",
issn = "0165-2427",
publisher = "Elsevier",
number = "3-4",

}

TY - JOUR

T1 - Effects of Salmonella enterica serovars Typhimurium (ST) and Choleraesuis (SC) on chemokine and cytokine expression in swine ileum and jejunal epithelial cells

AU - Skjolaas, K. A.

AU - Burkey, Thomas E

AU - Dritz, S. S.

AU - Minton, J. E.

PY - 2006/6/15

Y1 - 2006/6/15

N2 - The gastrointestinal epithelium represents a barrier to potentially invasive enteric pathogens, maintains a role in innate immune surveillance, and is a source of both chemokine and cytokine chemotactic mediators in response to bacterial invasion. In the current study, we evaluated cytokine and chemokine mediators known to regulate movement of macrophages (macrophage migration inhibitory factor; MIF), neutrophils (IL8), dendritic cells (CCL20), and epithelial remodeling (osteopontin; OPN) in response to invasive swine enteropathogens Salmonella enterica serovar Typhimurium (ST) or Choleraesuis (SC). For the in vivo experiment, weaned pigs served as uninfected controls (0 h) or were given 3 × 109 CFU ST orally. Pigs were sacrificed at 8, 24, 48, and 144 h after inoculation and total RNA was extracted from defined segments of proximal (PI) and distal (DI) ileum. Relative expression of MIF and OPN were not affected by ST. IL8 expression was increased numerically (P = 0.17 for the interaction term) at 24 and 144 h in the PI and these increases accounted for greater expression in the PI relative to the DI (P < 0.05). Relative expression of CCL20 was increased at 24 h after ST (P < 0.05). Next, we evaluated the time course of MIF, IL8, CCL20, and OPN mRNA expression induced by application of lipopolysaccharide (LPS), ST or SC in vitro using pig jejunal epithelial cells (IPEC-J2). Cells were grown to confluency on permeable membranes, and treated apically with LPS (10 ng/mL), ST or SC (108/well). After 1 h, cells were washed to remove LPS or extracellular bacteria, and media containing gentamicin was added to kill remaining extracellular bacteria. Media and RNA were collected at 1.5, 3, and 6 h after treatment. MIF mRNA was not affected by LPS or bacterial treatment. Similarly, IL8 expression was not affected by LPS, but was increased by ST and SC relative to controls at 1.5 and 3 h post exposure (P < 0.05 for all comparisons). Treatment with SC increased CCL20 mRNA relative to controls at 3 h (P < 0.05), while ST increased CCL20 at 1.5, 3, and 6 h with maximal expression at 6 h (P < 0.05 for all comparisons). ST and SC increased polarized IL8 secretion. Our data demonstrate that invasive bacterial pathogens in the pig gastrointestinal tract trigger upregulation of selected cytokine and chemokine mediators, but serovars of Salmonella elicited differing patterns of activation in vitro.

AB - The gastrointestinal epithelium represents a barrier to potentially invasive enteric pathogens, maintains a role in innate immune surveillance, and is a source of both chemokine and cytokine chemotactic mediators in response to bacterial invasion. In the current study, we evaluated cytokine and chemokine mediators known to regulate movement of macrophages (macrophage migration inhibitory factor; MIF), neutrophils (IL8), dendritic cells (CCL20), and epithelial remodeling (osteopontin; OPN) in response to invasive swine enteropathogens Salmonella enterica serovar Typhimurium (ST) or Choleraesuis (SC). For the in vivo experiment, weaned pigs served as uninfected controls (0 h) or were given 3 × 109 CFU ST orally. Pigs were sacrificed at 8, 24, 48, and 144 h after inoculation and total RNA was extracted from defined segments of proximal (PI) and distal (DI) ileum. Relative expression of MIF and OPN were not affected by ST. IL8 expression was increased numerically (P = 0.17 for the interaction term) at 24 and 144 h in the PI and these increases accounted for greater expression in the PI relative to the DI (P < 0.05). Relative expression of CCL20 was increased at 24 h after ST (P < 0.05). Next, we evaluated the time course of MIF, IL8, CCL20, and OPN mRNA expression induced by application of lipopolysaccharide (LPS), ST or SC in vitro using pig jejunal epithelial cells (IPEC-J2). Cells were grown to confluency on permeable membranes, and treated apically with LPS (10 ng/mL), ST or SC (108/well). After 1 h, cells were washed to remove LPS or extracellular bacteria, and media containing gentamicin was added to kill remaining extracellular bacteria. Media and RNA were collected at 1.5, 3, and 6 h after treatment. MIF mRNA was not affected by LPS or bacterial treatment. Similarly, IL8 expression was not affected by LPS, but was increased by ST and SC relative to controls at 1.5 and 3 h post exposure (P < 0.05 for all comparisons). Treatment with SC increased CCL20 mRNA relative to controls at 3 h (P < 0.05), while ST increased CCL20 at 1.5, 3, and 6 h with maximal expression at 6 h (P < 0.05 for all comparisons). ST and SC increased polarized IL8 secretion. Our data demonstrate that invasive bacterial pathogens in the pig gastrointestinal tract trigger upregulation of selected cytokine and chemokine mediators, but serovars of Salmonella elicited differing patterns of activation in vitro.

KW - Chemokines

KW - Cytokines

KW - Gut

KW - Salmonella enterica

KW - Swine

UR - http://www.scopus.com/inward/record.url?scp=33646147790&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646147790&partnerID=8YFLogxK

U2 - 10.1016/j.vetimm.2006.01.002

DO - 10.1016/j.vetimm.2006.01.002

M3 - Article

VL - 111

SP - 199

EP - 209

JO - Veterinary Immunology and Immunopathology

JF - Veterinary Immunology and Immunopathology

SN - 0165-2427

IS - 3-4

ER -