Effects of ketamine compared with urethane anesthesia on vestibular sensory evoked potentials and systemic physiology in mice

Choongheon Lee, Timothy A. Jones

Research output: Contribution to journalArticle

Abstract

The injectable anesthetic mixture ketamine-xylazine is commonly used for electrophysiologic experiments in laboratory animals, especially rodents. General anesthesia can induce significant changes in systemic physiology, including those that compromise neural function, thus introducing research confounds. The extent of such concerns varies by agent. Here in mice, we compared the effects of ketamine-xylazine and urethane-xylazine anesthesia on systemic physiologic parameters and the vestibular sensory evoked potential (VsEP), a tool used commonly to assess peripheral vestibular function. Urethane-xylazine anesthesia provided longer anesthesia, prolonged survival times, and less compromised respiratory and cardiovascular function, compared with ketamine-xylazine. In the absence of countermeasures, mice anesthetized with either ketamine-xylazine or urethane-xylazine showed evidence of hypoxemia and fluctuations in brain temperature, heart rate, respiration rate, and VsEP response latency. The levels of hypoxemia had no effect on VsEP response parameters over the period of study (2 to 5 h). Hypoxemia was effectively countered with O2 supplementation, which stabilized respiratory rates and improved mean survival times by 160% in mice anesthetized with ketamine-xylazine. Monitoring and controlling brain temperature reduced variation in VsEP latency. VsEP thresholds, latencies, and amplitudes did not differ between mice under ketamine-xylazine compared with urethane-xylazine when the brain temperature was held at the same set point. These findings demonstrate that urethane-xylazine provides improved systemic physiologic conditions during anesthesia in mice and may be substituted for ketamine-xylazine in studies using the VsEP to evaluate peripheral vestibular function. Such advantages may prove useful to research in other neuroscience areas and might reduce the number of animals used to achieve adequate sample sizes.

Original languageEnglish (US)
Pages (from-to)268-277
Number of pages10
JournalJournal of the American Association for Laboratory Animal Science
Volume57
Issue number3
StatePublished - May 2018

Fingerprint

urethane
evoked potentials
xylazine
ketamine
anesthesia
physiology
mice
hypoxia
respiratory rate
brain
laboratory animals
temperature
neurophysiology
anesthetics
heart rate
rodents

Keywords

  • Vestibular sensory evoked potential
  • VsEP

ASJC Scopus subject areas

  • Animal Science and Zoology

Cite this

@article{9b1c7e8ad7ee448b9c6d11cb52c30db0,
title = "Effects of ketamine compared with urethane anesthesia on vestibular sensory evoked potentials and systemic physiology in mice",
abstract = "The injectable anesthetic mixture ketamine-xylazine is commonly used for electrophysiologic experiments in laboratory animals, especially rodents. General anesthesia can induce significant changes in systemic physiology, including those that compromise neural function, thus introducing research confounds. The extent of such concerns varies by agent. Here in mice, we compared the effects of ketamine-xylazine and urethane-xylazine anesthesia on systemic physiologic parameters and the vestibular sensory evoked potential (VsEP), a tool used commonly to assess peripheral vestibular function. Urethane-xylazine anesthesia provided longer anesthesia, prolonged survival times, and less compromised respiratory and cardiovascular function, compared with ketamine-xylazine. In the absence of countermeasures, mice anesthetized with either ketamine-xylazine or urethane-xylazine showed evidence of hypoxemia and fluctuations in brain temperature, heart rate, respiration rate, and VsEP response latency. The levels of hypoxemia had no effect on VsEP response parameters over the period of study (2 to 5 h). Hypoxemia was effectively countered with O2 supplementation, which stabilized respiratory rates and improved mean survival times by 160{\%} in mice anesthetized with ketamine-xylazine. Monitoring and controlling brain temperature reduced variation in VsEP latency. VsEP thresholds, latencies, and amplitudes did not differ between mice under ketamine-xylazine compared with urethane-xylazine when the brain temperature was held at the same set point. These findings demonstrate that urethane-xylazine provides improved systemic physiologic conditions during anesthesia in mice and may be substituted for ketamine-xylazine in studies using the VsEP to evaluate peripheral vestibular function. Such advantages may prove useful to research in other neuroscience areas and might reduce the number of animals used to achieve adequate sample sizes.",
keywords = "Vestibular sensory evoked potential, VsEP",
author = "Choongheon Lee and Jones, {Timothy A.}",
year = "2018",
month = "5",
language = "English (US)",
volume = "57",
pages = "268--277",
journal = "Journal of the American Association for Laboratory Animal Science",
issn = "1559-6109",
publisher = "American Association for Laboratory Animal Science",
number = "3",

}

TY - JOUR

T1 - Effects of ketamine compared with urethane anesthesia on vestibular sensory evoked potentials and systemic physiology in mice

AU - Lee, Choongheon

AU - Jones, Timothy A.

PY - 2018/5

Y1 - 2018/5

N2 - The injectable anesthetic mixture ketamine-xylazine is commonly used for electrophysiologic experiments in laboratory animals, especially rodents. General anesthesia can induce significant changes in systemic physiology, including those that compromise neural function, thus introducing research confounds. The extent of such concerns varies by agent. Here in mice, we compared the effects of ketamine-xylazine and urethane-xylazine anesthesia on systemic physiologic parameters and the vestibular sensory evoked potential (VsEP), a tool used commonly to assess peripheral vestibular function. Urethane-xylazine anesthesia provided longer anesthesia, prolonged survival times, and less compromised respiratory and cardiovascular function, compared with ketamine-xylazine. In the absence of countermeasures, mice anesthetized with either ketamine-xylazine or urethane-xylazine showed evidence of hypoxemia and fluctuations in brain temperature, heart rate, respiration rate, and VsEP response latency. The levels of hypoxemia had no effect on VsEP response parameters over the period of study (2 to 5 h). Hypoxemia was effectively countered with O2 supplementation, which stabilized respiratory rates and improved mean survival times by 160% in mice anesthetized with ketamine-xylazine. Monitoring and controlling brain temperature reduced variation in VsEP latency. VsEP thresholds, latencies, and amplitudes did not differ between mice under ketamine-xylazine compared with urethane-xylazine when the brain temperature was held at the same set point. These findings demonstrate that urethane-xylazine provides improved systemic physiologic conditions during anesthesia in mice and may be substituted for ketamine-xylazine in studies using the VsEP to evaluate peripheral vestibular function. Such advantages may prove useful to research in other neuroscience areas and might reduce the number of animals used to achieve adequate sample sizes.

AB - The injectable anesthetic mixture ketamine-xylazine is commonly used for electrophysiologic experiments in laboratory animals, especially rodents. General anesthesia can induce significant changes in systemic physiology, including those that compromise neural function, thus introducing research confounds. The extent of such concerns varies by agent. Here in mice, we compared the effects of ketamine-xylazine and urethane-xylazine anesthesia on systemic physiologic parameters and the vestibular sensory evoked potential (VsEP), a tool used commonly to assess peripheral vestibular function. Urethane-xylazine anesthesia provided longer anesthesia, prolonged survival times, and less compromised respiratory and cardiovascular function, compared with ketamine-xylazine. In the absence of countermeasures, mice anesthetized with either ketamine-xylazine or urethane-xylazine showed evidence of hypoxemia and fluctuations in brain temperature, heart rate, respiration rate, and VsEP response latency. The levels of hypoxemia had no effect on VsEP response parameters over the period of study (2 to 5 h). Hypoxemia was effectively countered with O2 supplementation, which stabilized respiratory rates and improved mean survival times by 160% in mice anesthetized with ketamine-xylazine. Monitoring and controlling brain temperature reduced variation in VsEP latency. VsEP thresholds, latencies, and amplitudes did not differ between mice under ketamine-xylazine compared with urethane-xylazine when the brain temperature was held at the same set point. These findings demonstrate that urethane-xylazine provides improved systemic physiologic conditions during anesthesia in mice and may be substituted for ketamine-xylazine in studies using the VsEP to evaluate peripheral vestibular function. Such advantages may prove useful to research in other neuroscience areas and might reduce the number of animals used to achieve adequate sample sizes.

KW - Vestibular sensory evoked potential

KW - VsEP

UR - http://www.scopus.com/inward/record.url?scp=85055835405&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055835405&partnerID=8YFLogxK

M3 - Article

C2 - 29784077

AN - SCOPUS:85055835405

VL - 57

SP - 268

EP - 277

JO - Journal of the American Association for Laboratory Animal Science

JF - Journal of the American Association for Laboratory Animal Science

SN - 1559-6109

IS - 3

ER -