DNA, RNA, and DNA/RNA Oligomer Duplexes

A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties

Besik I. Kankia, Luis A Marky

Research output: Contribution to journalArticle

81 Citations (Scopus)

Abstract

We used a combination of spectroscopic, calorimetric, density, and ultrasonic techniques to determine complete thermodynamic profiles, including hydration effects, for the formation of a set of DNA, RNA, and DNA/ RNA oligomer duplexes, from the mixing of their complementary strands. UV melting curves show that at room temperature all four molecules are in the duplex state while the circular dichroism spectra indicate that the DNA duplex is in the "B" conformation and the RNA and DNA/RNA hybrid duplexes are in the "A" conformation. The favorable formation of these duplexes at 20°C is characterized with exothermic enthalpies and unfavorable entropies, the RNA duplex is the more stable one, resulting from a more favorable heat of 7-17 kcal/mol. The volume and compressibility measurements show that the formation of each duplex is accompanied by an uptake of water molecules and that the overall hydration of a duplex is mainly determined by its conformation; the DNA duplex is 2-fold more hydrated than any of the other three duplexes. We also used density and ultrasonic techniques to determine the changes in the apparent molar volume, ΔΦV, and adiabatic compressibility, ΔΦKs, for the interaction of Mg2+ with each duplex and its component single strands. These ΔΦV and ΔΦKs values range from 2.2 cm3/mol and 6.0 × 10-4 cm3/(mol bar) to 10.0 cm3/ mol and 21.9 × 10-4 cm3/(mol bar), respectively. The magnitude of the lowest values for the interaction of Mg2+ with the RNA duplex suggests the formation of Mg2+-RNA outer-sphere complexes. However, the magnitude of the higher values for the interaction of Mg2+ with the DNA duplex, and two of the single strands, may be consistent with the formation of Mg2+-nucleic acid inner-sphere complexes. Furthermore, the resulting ΔΦV/ΔΦKs ratios of ∼0.75 × 104 (formation of duplexes) and ∼0.48 × 10-4 (Mg2+ binding) suggest the uptake of mostly hydrophobic water and release of mostly electrostricted water, respectively.

Original languageEnglish (US)
Pages (from-to)8759-8767
Number of pages9
JournalJournal of Physical Chemistry B
Volume103
Issue number41
StatePublished - Oct 14 1999

Fingerprint

RNA
oligomers
Oligomers
Hydration
hydration
DNA
deoxyribonucleic acid
heat
strands
Conformations
compressibility
Compressibility
ultrasonics
Water
water
Ultrasonics
interactions
nucleic acids
Molecules
Nucleic acids

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Cite this

DNA, RNA, and DNA/RNA Oligomer Duplexes : A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties. / Kankia, Besik I.; Marky, Luis A.

In: Journal of Physical Chemistry B, Vol. 103, No. 41, 14.10.1999, p. 8759-8767.

Research output: Contribution to journalArticle

@article{9fc27bb25a75413da134b0992e324266,
title = "DNA, RNA, and DNA/RNA Oligomer Duplexes: A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties",
abstract = "We used a combination of spectroscopic, calorimetric, density, and ultrasonic techniques to determine complete thermodynamic profiles, including hydration effects, for the formation of a set of DNA, RNA, and DNA/ RNA oligomer duplexes, from the mixing of their complementary strands. UV melting curves show that at room temperature all four molecules are in the duplex state while the circular dichroism spectra indicate that the DNA duplex is in the {"}B{"} conformation and the RNA and DNA/RNA hybrid duplexes are in the {"}A{"} conformation. The favorable formation of these duplexes at 20°C is characterized with exothermic enthalpies and unfavorable entropies, the RNA duplex is the more stable one, resulting from a more favorable heat of 7-17 kcal/mol. The volume and compressibility measurements show that the formation of each duplex is accompanied by an uptake of water molecules and that the overall hydration of a duplex is mainly determined by its conformation; the DNA duplex is 2-fold more hydrated than any of the other three duplexes. We also used density and ultrasonic techniques to determine the changes in the apparent molar volume, ΔΦV, and adiabatic compressibility, ΔΦKs, for the interaction of Mg2+ with each duplex and its component single strands. These ΔΦV and ΔΦKs values range from 2.2 cm3/mol and 6.0 × 10-4 cm3/(mol bar) to 10.0 cm3/ mol and 21.9 × 10-4 cm3/(mol bar), respectively. The magnitude of the lowest values for the interaction of Mg2+ with the RNA duplex suggests the formation of Mg2+-RNA outer-sphere complexes. However, the magnitude of the higher values for the interaction of Mg2+ with the DNA duplex, and two of the single strands, may be consistent with the formation of Mg2+-nucleic acid inner-sphere complexes. Furthermore, the resulting ΔΦV/ΔΦKs ratios of ∼0.75 × 104 (formation of duplexes) and ∼0.48 × 10-4 (Mg2+ binding) suggest the uptake of mostly hydrophobic water and release of mostly electrostricted water, respectively.",
author = "Kankia, {Besik I.} and Marky, {Luis A}",
year = "1999",
month = "10",
day = "14",
language = "English (US)",
volume = "103",
pages = "8759--8767",
journal = "Journal of Physical Chemistry B",
issn = "1520-6106",
number = "41",

}

TY - JOUR

T1 - DNA, RNA, and DNA/RNA Oligomer Duplexes

T2 - A Comparative Study of Their Stability, Heat, Hydration, and Mg2+ Binding Properties

AU - Kankia, Besik I.

AU - Marky, Luis A

PY - 1999/10/14

Y1 - 1999/10/14

N2 - We used a combination of spectroscopic, calorimetric, density, and ultrasonic techniques to determine complete thermodynamic profiles, including hydration effects, for the formation of a set of DNA, RNA, and DNA/ RNA oligomer duplexes, from the mixing of their complementary strands. UV melting curves show that at room temperature all four molecules are in the duplex state while the circular dichroism spectra indicate that the DNA duplex is in the "B" conformation and the RNA and DNA/RNA hybrid duplexes are in the "A" conformation. The favorable formation of these duplexes at 20°C is characterized with exothermic enthalpies and unfavorable entropies, the RNA duplex is the more stable one, resulting from a more favorable heat of 7-17 kcal/mol. The volume and compressibility measurements show that the formation of each duplex is accompanied by an uptake of water molecules and that the overall hydration of a duplex is mainly determined by its conformation; the DNA duplex is 2-fold more hydrated than any of the other three duplexes. We also used density and ultrasonic techniques to determine the changes in the apparent molar volume, ΔΦV, and adiabatic compressibility, ΔΦKs, for the interaction of Mg2+ with each duplex and its component single strands. These ΔΦV and ΔΦKs values range from 2.2 cm3/mol and 6.0 × 10-4 cm3/(mol bar) to 10.0 cm3/ mol and 21.9 × 10-4 cm3/(mol bar), respectively. The magnitude of the lowest values for the interaction of Mg2+ with the RNA duplex suggests the formation of Mg2+-RNA outer-sphere complexes. However, the magnitude of the higher values for the interaction of Mg2+ with the DNA duplex, and two of the single strands, may be consistent with the formation of Mg2+-nucleic acid inner-sphere complexes. Furthermore, the resulting ΔΦV/ΔΦKs ratios of ∼0.75 × 104 (formation of duplexes) and ∼0.48 × 10-4 (Mg2+ binding) suggest the uptake of mostly hydrophobic water and release of mostly electrostricted water, respectively.

AB - We used a combination of spectroscopic, calorimetric, density, and ultrasonic techniques to determine complete thermodynamic profiles, including hydration effects, for the formation of a set of DNA, RNA, and DNA/ RNA oligomer duplexes, from the mixing of their complementary strands. UV melting curves show that at room temperature all four molecules are in the duplex state while the circular dichroism spectra indicate that the DNA duplex is in the "B" conformation and the RNA and DNA/RNA hybrid duplexes are in the "A" conformation. The favorable formation of these duplexes at 20°C is characterized with exothermic enthalpies and unfavorable entropies, the RNA duplex is the more stable one, resulting from a more favorable heat of 7-17 kcal/mol. The volume and compressibility measurements show that the formation of each duplex is accompanied by an uptake of water molecules and that the overall hydration of a duplex is mainly determined by its conformation; the DNA duplex is 2-fold more hydrated than any of the other three duplexes. We also used density and ultrasonic techniques to determine the changes in the apparent molar volume, ΔΦV, and adiabatic compressibility, ΔΦKs, for the interaction of Mg2+ with each duplex and its component single strands. These ΔΦV and ΔΦKs values range from 2.2 cm3/mol and 6.0 × 10-4 cm3/(mol bar) to 10.0 cm3/ mol and 21.9 × 10-4 cm3/(mol bar), respectively. The magnitude of the lowest values for the interaction of Mg2+ with the RNA duplex suggests the formation of Mg2+-RNA outer-sphere complexes. However, the magnitude of the higher values for the interaction of Mg2+ with the DNA duplex, and two of the single strands, may be consistent with the formation of Mg2+-nucleic acid inner-sphere complexes. Furthermore, the resulting ΔΦV/ΔΦKs ratios of ∼0.75 × 104 (formation of duplexes) and ∼0.48 × 10-4 (Mg2+ binding) suggest the uptake of mostly hydrophobic water and release of mostly electrostricted water, respectively.

UR - http://www.scopus.com/inward/record.url?scp=0001331773&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001331773&partnerID=8YFLogxK

M3 - Article

VL - 103

SP - 8759

EP - 8767

JO - Journal of Physical Chemistry B

JF - Journal of Physical Chemistry B

SN - 1520-6106

IS - 41

ER -