Diadenosine polyphosphates inhibit adenosine kinase activity but decrease levels of endogenous adenosine in rat brain

Suzanne M. Delaney, G. Michael Blackburn, Jonathan Geiger

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Findings in peripheral tissues that diadenosine polyphosphates (Ap(n)As) activate 5'-nucleotidase activity and inhibit adenosine kinase activity in vitro led us to test the hypothesis that Ap(n)As and analogues thereof, through such actions on purine enzymes, increase brain levels of endogenous adenosine in vivo. Accordingly, we tested Ap(n)As for their effects on the in vitro activities of adenosine kinase, adenosine deaminase, AMP deaminase and 5'-nucleotidase and, following unilateral microinjections in rat striatum, on in vivo levels of endogenous adenosine. Adenosine kinase activity was not affected significantly by 5',5'''-P1,P2-diadenosine pyrophosphate (Ap2A) or by 5',5'''-P1,P3-diadenosine triphosphate (Ap3A), but was inhibited by 5',5'''-P1,P4-diadenosine tetraphosphate (Ap4A), 5',5'''-P1,P5-diadenosine pentaphosphate (Ap5A) and 5',5'''-P1,P6-diadenosine hexaphosphate (Ap6A); apparent IC50 values were 5.0, 3.3 and 500 μM, respectively. Inhibition of adenosine kinase activity by Ap4A and the four metabolically stable analogues of Ap4A tested was uncompetitive. Following unilateral intrastriatal injections, adenosine levels, relative to uninjected contralateral striatum, were decreased significantly (P < 0.05) by 48% with Ap4A and by 37% with AppCH2ppA, a metabolically stable analogue of Ap4A. Striatal levels of adenosine were not affected significantly by Ap5A or Ap6A. Cytosolic, but not particulate 5'-nucleotidase activity was inhibited and AMP deaminase activity was increased by some Ap(n)As. Although adenosine kinase inhibitors increase levels of endogenous adenosine and we showed here that Ap(n)As were potent inhibitors of this enzyme, these particular actions of Ap(n)As were not consistent with their effects on levels of endogenous adenosine.

Original languageEnglish (US)
Pages (from-to)35-42
Number of pages8
JournalEuropean Journal of Pharmacology
Volume332
Issue number1
DOIs
StatePublished - Jul 30 1997

Fingerprint

Adenosine Kinase
Polyphosphates
Adenosine
5'-Nucleotidase
Brain
AMP Deaminase
Corpus Striatum
Adenosine Deaminase
Microinjections
Enzyme Inhibitors
Inhibitory Concentration 50
diadenosine tetraphosphate
Injections
Enzymes

Keywords

  • Adenine nucleotides
  • Adenosine
  • Brain
  • Diadenosine polyphosphate
  • Microwave
  • Rat

ASJC Scopus subject areas

  • Pharmacology

Cite this

Diadenosine polyphosphates inhibit adenosine kinase activity but decrease levels of endogenous adenosine in rat brain. / Delaney, Suzanne M.; Blackburn, G. Michael; Geiger, Jonathan.

In: European Journal of Pharmacology, Vol. 332, No. 1, 30.07.1997, p. 35-42.

Research output: Contribution to journalArticle

@article{808e3b50f38045a599b4fb8d954d04be,
title = "Diadenosine polyphosphates inhibit adenosine kinase activity but decrease levels of endogenous adenosine in rat brain",
abstract = "Findings in peripheral tissues that diadenosine polyphosphates (Ap(n)As) activate 5'-nucleotidase activity and inhibit adenosine kinase activity in vitro led us to test the hypothesis that Ap(n)As and analogues thereof, through such actions on purine enzymes, increase brain levels of endogenous adenosine in vivo. Accordingly, we tested Ap(n)As for their effects on the in vitro activities of adenosine kinase, adenosine deaminase, AMP deaminase and 5'-nucleotidase and, following unilateral microinjections in rat striatum, on in vivo levels of endogenous adenosine. Adenosine kinase activity was not affected significantly by 5',5'''-P1,P2-diadenosine pyrophosphate (Ap2A) or by 5',5'''-P1,P3-diadenosine triphosphate (Ap3A), but was inhibited by 5',5'''-P1,P4-diadenosine tetraphosphate (Ap4A), 5',5'''-P1,P5-diadenosine pentaphosphate (Ap5A) and 5',5'''-P1,P6-diadenosine hexaphosphate (Ap6A); apparent IC50 values were 5.0, 3.3 and 500 μM, respectively. Inhibition of adenosine kinase activity by Ap4A and the four metabolically stable analogues of Ap4A tested was uncompetitive. Following unilateral intrastriatal injections, adenosine levels, relative to uninjected contralateral striatum, were decreased significantly (P < 0.05) by 48{\%} with Ap4A and by 37{\%} with AppCH2ppA, a metabolically stable analogue of Ap4A. Striatal levels of adenosine were not affected significantly by Ap5A or Ap6A. Cytosolic, but not particulate 5'-nucleotidase activity was inhibited and AMP deaminase activity was increased by some Ap(n)As. Although adenosine kinase inhibitors increase levels of endogenous adenosine and we showed here that Ap(n)As were potent inhibitors of this enzyme, these particular actions of Ap(n)As were not consistent with their effects on levels of endogenous adenosine.",
keywords = "Adenine nucleotides, Adenosine, Brain, Diadenosine polyphosphate, Microwave, Rat",
author = "Delaney, {Suzanne M.} and Blackburn, {G. Michael} and Jonathan Geiger",
year = "1997",
month = "7",
day = "30",
doi = "10.1016/S0014-2999(97)01057-1",
language = "English (US)",
volume = "332",
pages = "35--42",
journal = "European Journal of Pharmacology",
issn = "0014-2999",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Diadenosine polyphosphates inhibit adenosine kinase activity but decrease levels of endogenous adenosine in rat brain

AU - Delaney, Suzanne M.

AU - Blackburn, G. Michael

AU - Geiger, Jonathan

PY - 1997/7/30

Y1 - 1997/7/30

N2 - Findings in peripheral tissues that diadenosine polyphosphates (Ap(n)As) activate 5'-nucleotidase activity and inhibit adenosine kinase activity in vitro led us to test the hypothesis that Ap(n)As and analogues thereof, through such actions on purine enzymes, increase brain levels of endogenous adenosine in vivo. Accordingly, we tested Ap(n)As for their effects on the in vitro activities of adenosine kinase, adenosine deaminase, AMP deaminase and 5'-nucleotidase and, following unilateral microinjections in rat striatum, on in vivo levels of endogenous adenosine. Adenosine kinase activity was not affected significantly by 5',5'''-P1,P2-diadenosine pyrophosphate (Ap2A) or by 5',5'''-P1,P3-diadenosine triphosphate (Ap3A), but was inhibited by 5',5'''-P1,P4-diadenosine tetraphosphate (Ap4A), 5',5'''-P1,P5-diadenosine pentaphosphate (Ap5A) and 5',5'''-P1,P6-diadenosine hexaphosphate (Ap6A); apparent IC50 values were 5.0, 3.3 and 500 μM, respectively. Inhibition of adenosine kinase activity by Ap4A and the four metabolically stable analogues of Ap4A tested was uncompetitive. Following unilateral intrastriatal injections, adenosine levels, relative to uninjected contralateral striatum, were decreased significantly (P < 0.05) by 48% with Ap4A and by 37% with AppCH2ppA, a metabolically stable analogue of Ap4A. Striatal levels of adenosine were not affected significantly by Ap5A or Ap6A. Cytosolic, but not particulate 5'-nucleotidase activity was inhibited and AMP deaminase activity was increased by some Ap(n)As. Although adenosine kinase inhibitors increase levels of endogenous adenosine and we showed here that Ap(n)As were potent inhibitors of this enzyme, these particular actions of Ap(n)As were not consistent with their effects on levels of endogenous adenosine.

AB - Findings in peripheral tissues that diadenosine polyphosphates (Ap(n)As) activate 5'-nucleotidase activity and inhibit adenosine kinase activity in vitro led us to test the hypothesis that Ap(n)As and analogues thereof, through such actions on purine enzymes, increase brain levels of endogenous adenosine in vivo. Accordingly, we tested Ap(n)As for their effects on the in vitro activities of adenosine kinase, adenosine deaminase, AMP deaminase and 5'-nucleotidase and, following unilateral microinjections in rat striatum, on in vivo levels of endogenous adenosine. Adenosine kinase activity was not affected significantly by 5',5'''-P1,P2-diadenosine pyrophosphate (Ap2A) or by 5',5'''-P1,P3-diadenosine triphosphate (Ap3A), but was inhibited by 5',5'''-P1,P4-diadenosine tetraphosphate (Ap4A), 5',5'''-P1,P5-diadenosine pentaphosphate (Ap5A) and 5',5'''-P1,P6-diadenosine hexaphosphate (Ap6A); apparent IC50 values were 5.0, 3.3 and 500 μM, respectively. Inhibition of adenosine kinase activity by Ap4A and the four metabolically stable analogues of Ap4A tested was uncompetitive. Following unilateral intrastriatal injections, adenosine levels, relative to uninjected contralateral striatum, were decreased significantly (P < 0.05) by 48% with Ap4A and by 37% with AppCH2ppA, a metabolically stable analogue of Ap4A. Striatal levels of adenosine were not affected significantly by Ap5A or Ap6A. Cytosolic, but not particulate 5'-nucleotidase activity was inhibited and AMP deaminase activity was increased by some Ap(n)As. Although adenosine kinase inhibitors increase levels of endogenous adenosine and we showed here that Ap(n)As were potent inhibitors of this enzyme, these particular actions of Ap(n)As were not consistent with their effects on levels of endogenous adenosine.

KW - Adenine nucleotides

KW - Adenosine

KW - Brain

KW - Diadenosine polyphosphate

KW - Microwave

KW - Rat

UR - http://www.scopus.com/inward/record.url?scp=0030849928&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030849928&partnerID=8YFLogxK

U2 - 10.1016/S0014-2999(97)01057-1

DO - 10.1016/S0014-2999(97)01057-1

M3 - Article

VL - 332

SP - 35

EP - 42

JO - European Journal of Pharmacology

JF - European Journal of Pharmacology

SN - 0014-2999

IS - 1

ER -