Developmental and hormonal regulation of transforming growth factor-β1 (TGFβ1), -2, and -3 gene expression in isolated prostatic epithelial and stromal cells: Epidermal growth factor and TGFβ interactions

Naoki Itoh, Urvashi Patel, Andrea S. Cupp, Michael K. Skinner

Research output: Contribution to journalArticle

70 Citations (Scopus)

Abstract

Growth factors are postulated to mediate stromal-epithelial interactions in the prostate to maintain normal tissue physiology. Transforming growth factor-β (TGFβ) has been shown to influence the prostate and probably mediate stromal-epithelial interactions. TGFβ1 messenger RNA (mRNA) expression is stimulated after castration and can be suppressed by in vivo treatment with androgens. The hypothesis tested is that TGFβ is regulated not only by androgen, but also by a network of locally produced growth factors that influence prostatic growth and differentiation. Epithelial and stromal cells from 20-day-old rat ventral prostate were isolated and used to test this hypothesis. The expression of mRNA for TGFβ1, -2, and -3 was analyzed by a quantitative RT-PCR procedure. Observations from this assay demonstrate that both epithelial and stromal cells express the mRNA for TGFβ1, -2, and -3. TGFβ1 mRNA expression was constant during development of the prostate. TGFβ2 mRNA expression was elevated at birth, then declined and elevated again at 100 days of age. TGFβ3 mRNA expression was high during puberty and young adult ages then declined at 100 days of age. TGFβ2 and TGFβ3 expression are inversely related during prostate development. After castration of 60-day-old rats, both TGFβ1 and TGFβ2 mRNA were enhanced. Interestingly, TGFβ3 mRNA was significantly suppressed after castration. Epidermal growth factor (EGF) stimulated TGFβ1 mRNA expression in stromal cells (6-fold increase), whereas keratinocyte growth factor stimulated TGFβ2 mRNA in epithelial cells. TGFβ inhibited both testosterone- and EGF- stimulated prostatic stromal and epithelial cell growth. EGF and TGFβ also inhibited prostatic ductal morphogenesis and growth in organ culture. Immunocytochemical localization of TGFβ in 20-day-old prostate demonstrated predominately stromal localization of the protein. These results indicate that the isoforms of TGFβ2 and TGFβ3 are differentially regulated during prostate development, suggesting distinct regulatory mechanisms. Testosterone did not affect TGFβ expression in cultured prostatic cells. These observations suggest that the in vivo effects of castration on TGFβs are regulated indirectly through a complex network of growth factors, not simply by direct androgen depletion. The ability of EGF to inhibit prostatic ductal morphogenesis and growth in organ culture is postulated to be in part mediated by the increase in TGFβ1 expression. In summary, a network of growth factor-mediated stromal-epithelial interactions is needed to maintain prostate growth and development. TGFβ is postulated to have an important role in this process.

Original languageEnglish (US)
Pages (from-to)1378-1388
Number of pages11
JournalEndocrinology
Volume139
Issue number3
DOIs
StatePublished - Jan 1 1998

Fingerprint

Transforming Growth Factors
Stromal Cells
Epidermal Growth Factor
Epithelial Cells
Gene Expression
Prostate
Messenger RNA
Castration
Intercellular Signaling Peptides and Proteins
Androgens
Organ Culture Techniques
Growth
Morphogenesis
Testosterone
Fibroblast Growth Factor 7
Puberty
Growth and Development
Young Adult
Cultured Cells
Protein Isoforms

ASJC Scopus subject areas

  • Endocrinology

Cite this

@article{bfc9af910dc14a8e8674aba244aa10f0,
title = "Developmental and hormonal regulation of transforming growth factor-β1 (TGFβ1), -2, and -3 gene expression in isolated prostatic epithelial and stromal cells: Epidermal growth factor and TGFβ interactions",
abstract = "Growth factors are postulated to mediate stromal-epithelial interactions in the prostate to maintain normal tissue physiology. Transforming growth factor-β (TGFβ) has been shown to influence the prostate and probably mediate stromal-epithelial interactions. TGFβ1 messenger RNA (mRNA) expression is stimulated after castration and can be suppressed by in vivo treatment with androgens. The hypothesis tested is that TGFβ is regulated not only by androgen, but also by a network of locally produced growth factors that influence prostatic growth and differentiation. Epithelial and stromal cells from 20-day-old rat ventral prostate were isolated and used to test this hypothesis. The expression of mRNA for TGFβ1, -2, and -3 was analyzed by a quantitative RT-PCR procedure. Observations from this assay demonstrate that both epithelial and stromal cells express the mRNA for TGFβ1, -2, and -3. TGFβ1 mRNA expression was constant during development of the prostate. TGFβ2 mRNA expression was elevated at birth, then declined and elevated again at 100 days of age. TGFβ3 mRNA expression was high during puberty and young adult ages then declined at 100 days of age. TGFβ2 and TGFβ3 expression are inversely related during prostate development. After castration of 60-day-old rats, both TGFβ1 and TGFβ2 mRNA were enhanced. Interestingly, TGFβ3 mRNA was significantly suppressed after castration. Epidermal growth factor (EGF) stimulated TGFβ1 mRNA expression in stromal cells (6-fold increase), whereas keratinocyte growth factor stimulated TGFβ2 mRNA in epithelial cells. TGFβ inhibited both testosterone- and EGF- stimulated prostatic stromal and epithelial cell growth. EGF and TGFβ also inhibited prostatic ductal morphogenesis and growth in organ culture. Immunocytochemical localization of TGFβ in 20-day-old prostate demonstrated predominately stromal localization of the protein. These results indicate that the isoforms of TGFβ2 and TGFβ3 are differentially regulated during prostate development, suggesting distinct regulatory mechanisms. Testosterone did not affect TGFβ expression in cultured prostatic cells. These observations suggest that the in vivo effects of castration on TGFβs are regulated indirectly through a complex network of growth factors, not simply by direct androgen depletion. The ability of EGF to inhibit prostatic ductal morphogenesis and growth in organ culture is postulated to be in part mediated by the increase in TGFβ1 expression. In summary, a network of growth factor-mediated stromal-epithelial interactions is needed to maintain prostate growth and development. TGFβ is postulated to have an important role in this process.",
author = "Naoki Itoh and Urvashi Patel and Cupp, {Andrea S.} and Skinner, {Michael K.}",
year = "1998",
month = "1",
day = "1",
doi = "10.1210/endo.139.3.5787",
language = "English (US)",
volume = "139",
pages = "1378--1388",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "3",

}

TY - JOUR

T1 - Developmental and hormonal regulation of transforming growth factor-β1 (TGFβ1), -2, and -3 gene expression in isolated prostatic epithelial and stromal cells

T2 - Epidermal growth factor and TGFβ interactions

AU - Itoh, Naoki

AU - Patel, Urvashi

AU - Cupp, Andrea S.

AU - Skinner, Michael K.

PY - 1998/1/1

Y1 - 1998/1/1

N2 - Growth factors are postulated to mediate stromal-epithelial interactions in the prostate to maintain normal tissue physiology. Transforming growth factor-β (TGFβ) has been shown to influence the prostate and probably mediate stromal-epithelial interactions. TGFβ1 messenger RNA (mRNA) expression is stimulated after castration and can be suppressed by in vivo treatment with androgens. The hypothesis tested is that TGFβ is regulated not only by androgen, but also by a network of locally produced growth factors that influence prostatic growth and differentiation. Epithelial and stromal cells from 20-day-old rat ventral prostate were isolated and used to test this hypothesis. The expression of mRNA for TGFβ1, -2, and -3 was analyzed by a quantitative RT-PCR procedure. Observations from this assay demonstrate that both epithelial and stromal cells express the mRNA for TGFβ1, -2, and -3. TGFβ1 mRNA expression was constant during development of the prostate. TGFβ2 mRNA expression was elevated at birth, then declined and elevated again at 100 days of age. TGFβ3 mRNA expression was high during puberty and young adult ages then declined at 100 days of age. TGFβ2 and TGFβ3 expression are inversely related during prostate development. After castration of 60-day-old rats, both TGFβ1 and TGFβ2 mRNA were enhanced. Interestingly, TGFβ3 mRNA was significantly suppressed after castration. Epidermal growth factor (EGF) stimulated TGFβ1 mRNA expression in stromal cells (6-fold increase), whereas keratinocyte growth factor stimulated TGFβ2 mRNA in epithelial cells. TGFβ inhibited both testosterone- and EGF- stimulated prostatic stromal and epithelial cell growth. EGF and TGFβ also inhibited prostatic ductal morphogenesis and growth in organ culture. Immunocytochemical localization of TGFβ in 20-day-old prostate demonstrated predominately stromal localization of the protein. These results indicate that the isoforms of TGFβ2 and TGFβ3 are differentially regulated during prostate development, suggesting distinct regulatory mechanisms. Testosterone did not affect TGFβ expression in cultured prostatic cells. These observations suggest that the in vivo effects of castration on TGFβs are regulated indirectly through a complex network of growth factors, not simply by direct androgen depletion. The ability of EGF to inhibit prostatic ductal morphogenesis and growth in organ culture is postulated to be in part mediated by the increase in TGFβ1 expression. In summary, a network of growth factor-mediated stromal-epithelial interactions is needed to maintain prostate growth and development. TGFβ is postulated to have an important role in this process.

AB - Growth factors are postulated to mediate stromal-epithelial interactions in the prostate to maintain normal tissue physiology. Transforming growth factor-β (TGFβ) has been shown to influence the prostate and probably mediate stromal-epithelial interactions. TGFβ1 messenger RNA (mRNA) expression is stimulated after castration and can be suppressed by in vivo treatment with androgens. The hypothesis tested is that TGFβ is regulated not only by androgen, but also by a network of locally produced growth factors that influence prostatic growth and differentiation. Epithelial and stromal cells from 20-day-old rat ventral prostate were isolated and used to test this hypothesis. The expression of mRNA for TGFβ1, -2, and -3 was analyzed by a quantitative RT-PCR procedure. Observations from this assay demonstrate that both epithelial and stromal cells express the mRNA for TGFβ1, -2, and -3. TGFβ1 mRNA expression was constant during development of the prostate. TGFβ2 mRNA expression was elevated at birth, then declined and elevated again at 100 days of age. TGFβ3 mRNA expression was high during puberty and young adult ages then declined at 100 days of age. TGFβ2 and TGFβ3 expression are inversely related during prostate development. After castration of 60-day-old rats, both TGFβ1 and TGFβ2 mRNA were enhanced. Interestingly, TGFβ3 mRNA was significantly suppressed after castration. Epidermal growth factor (EGF) stimulated TGFβ1 mRNA expression in stromal cells (6-fold increase), whereas keratinocyte growth factor stimulated TGFβ2 mRNA in epithelial cells. TGFβ inhibited both testosterone- and EGF- stimulated prostatic stromal and epithelial cell growth. EGF and TGFβ also inhibited prostatic ductal morphogenesis and growth in organ culture. Immunocytochemical localization of TGFβ in 20-day-old prostate demonstrated predominately stromal localization of the protein. These results indicate that the isoforms of TGFβ2 and TGFβ3 are differentially regulated during prostate development, suggesting distinct regulatory mechanisms. Testosterone did not affect TGFβ expression in cultured prostatic cells. These observations suggest that the in vivo effects of castration on TGFβs are regulated indirectly through a complex network of growth factors, not simply by direct androgen depletion. The ability of EGF to inhibit prostatic ductal morphogenesis and growth in organ culture is postulated to be in part mediated by the increase in TGFβ1 expression. In summary, a network of growth factor-mediated stromal-epithelial interactions is needed to maintain prostate growth and development. TGFβ is postulated to have an important role in this process.

UR - http://www.scopus.com/inward/record.url?scp=0031768326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031768326&partnerID=8YFLogxK

U2 - 10.1210/endo.139.3.5787

DO - 10.1210/endo.139.3.5787

M3 - Article

C2 - 9492075

AN - SCOPUS:0031768326

VL - 139

SP - 1378

EP - 1388

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 3

ER -