Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens

E. J. Walsh, J. McGee, J. L. Fitzakerley

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

1. The effects of glutamate, N-methyl-D-aspartate (NMDA), and NMDA receptor antagonists, D-α-aminoadipate (DαAA) and 2-amino-5- phosphonovalerate (APV), microionophoretically applied onto neurons in the caudal divisions (posteroventral and dorsal subnuclei) of the cochlear nuclear complex (CN), were investigated during postnatal development in kittens with the use of extracellular techniques. From birth through postnatal day 7, microionophoretically applied glutamate elevated the acoustically evoked discharge rates of nearly 80% of neurons studied. Although fewer neurons were studied with the use of NMDA, ~65% of these responded to this glutamatergic agonist, and no developmental changes in the percentage of responsive neurons were observed. The actions of NMDA antagonists were studied in a relatively small number of neurons, and results support the supposition that glutamate, or a glutamate-like substance, acts as a CN neurotransmitter throughout postnatal life. 2. Approximately 64% of CN neurons encountered among neonatal animals were unresponsive to acoustic stimulation, even at the highest output levels available (>120 dB SPL). That percentage declined monotonically during the next three postnatal days, such that ~23% of neurons encountered were unresponsive to acoustic stimulation on the third day. Essentially all encountered neurons were responsive to acoustic stimulation by the middle of the second postnatal week. Under conditions of simultaneous glutamate and acoustic stimulation, neurons in this general class of 'acoustically unresponsive' neurons segregated into two groups. Glutamate increased spontaneous discharge rate in 45% of the neurons studied, however, these units remained acoustically unresponsive during combined sound and excitatory amino acid stimulation (group A1). In the second group (A2), 55% of the neurons that were acoustically unresponsive under control (sound alone) conditions responded to the acoustic component of the combined acoustic and glutamate stimulation (the experimental condition) in a frequency-dependent manner. A2 neurons exhibited temporal firing patterns characteristic of acoustically responsive neurons of corresponding age, suggesting that these neurons are functionally connected to the auditory periphery, whereas A1 neurons are not. 3. Dose-response curves were either sigmoidal or linear over the range that measurements were made, and maximum discharge rates evoked by high doses of glutamate in the youngest animals studied tended to be lower than those produced by acoustic stimulation alone in older animals. These results suggest that intrinsic properties contribute to the mechanism(s) that limits neuronal responsiveness. Average dose- response curve slopes were higher for neurons recorded from older animals, also indicating that intrinsic properties regulating dynamic response range are acquired postnatally in the kitten CN.

Original languageEnglish (US)
Pages (from-to)201-218
Number of pages18
JournalJournal of Neurophysiology
Volume69
Issue number1
DOIs
StatePublished - Jan 1 1993

Fingerprint

Cochlea
N-Methylaspartate
Glutamic Acid
Neurons
Acoustic Stimulation
varespladib methyl
Newborn Animals
2-Amino-5-phosphonovalerate
Excitatory Amino Acids
N-Methyl-D-Aspartate Receptors
Acoustics

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology

Cite this

Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens. / Walsh, E. J.; McGee, J.; Fitzakerley, J. L.

In: Journal of Neurophysiology, Vol. 69, No. 1, 01.01.1993, p. 201-218.

Research output: Contribution to journalArticle

Walsh, E. J. ; McGee, J. ; Fitzakerley, J. L. / Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens. In: Journal of Neurophysiology. 1993 ; Vol. 69, No. 1. pp. 201-218.
@article{b358a97b65db40a6bb1abc6c34575a63,
title = "Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens",
abstract = "1. The effects of glutamate, N-methyl-D-aspartate (NMDA), and NMDA receptor antagonists, D-α-aminoadipate (DαAA) and 2-amino-5- phosphonovalerate (APV), microionophoretically applied onto neurons in the caudal divisions (posteroventral and dorsal subnuclei) of the cochlear nuclear complex (CN), were investigated during postnatal development in kittens with the use of extracellular techniques. From birth through postnatal day 7, microionophoretically applied glutamate elevated the acoustically evoked discharge rates of nearly 80{\%} of neurons studied. Although fewer neurons were studied with the use of NMDA, ~65{\%} of these responded to this glutamatergic agonist, and no developmental changes in the percentage of responsive neurons were observed. The actions of NMDA antagonists were studied in a relatively small number of neurons, and results support the supposition that glutamate, or a glutamate-like substance, acts as a CN neurotransmitter throughout postnatal life. 2. Approximately 64{\%} of CN neurons encountered among neonatal animals were unresponsive to acoustic stimulation, even at the highest output levels available (>120 dB SPL). That percentage declined monotonically during the next three postnatal days, such that ~23{\%} of neurons encountered were unresponsive to acoustic stimulation on the third day. Essentially all encountered neurons were responsive to acoustic stimulation by the middle of the second postnatal week. Under conditions of simultaneous glutamate and acoustic stimulation, neurons in this general class of 'acoustically unresponsive' neurons segregated into two groups. Glutamate increased spontaneous discharge rate in 45{\%} of the neurons studied, however, these units remained acoustically unresponsive during combined sound and excitatory amino acid stimulation (group A1). In the second group (A2), 55{\%} of the neurons that were acoustically unresponsive under control (sound alone) conditions responded to the acoustic component of the combined acoustic and glutamate stimulation (the experimental condition) in a frequency-dependent manner. A2 neurons exhibited temporal firing patterns characteristic of acoustically responsive neurons of corresponding age, suggesting that these neurons are functionally connected to the auditory periphery, whereas A1 neurons are not. 3. Dose-response curves were either sigmoidal or linear over the range that measurements were made, and maximum discharge rates evoked by high doses of glutamate in the youngest animals studied tended to be lower than those produced by acoustic stimulation alone in older animals. These results suggest that intrinsic properties contribute to the mechanism(s) that limits neuronal responsiveness. Average dose- response curve slopes were higher for neurons recorded from older animals, also indicating that intrinsic properties regulating dynamic response range are acquired postnatally in the kitten CN.",
author = "Walsh, {E. J.} and J. McGee and Fitzakerley, {J. L.}",
year = "1993",
month = "1",
day = "1",
doi = "10.1152/jn.1993.69.1.201",
language = "English (US)",
volume = "69",
pages = "201--218",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Development of glutamate and NMDA sensitivity of neurons within the cochlear nuclear complex of kittens

AU - Walsh, E. J.

AU - McGee, J.

AU - Fitzakerley, J. L.

PY - 1993/1/1

Y1 - 1993/1/1

N2 - 1. The effects of glutamate, N-methyl-D-aspartate (NMDA), and NMDA receptor antagonists, D-α-aminoadipate (DαAA) and 2-amino-5- phosphonovalerate (APV), microionophoretically applied onto neurons in the caudal divisions (posteroventral and dorsal subnuclei) of the cochlear nuclear complex (CN), were investigated during postnatal development in kittens with the use of extracellular techniques. From birth through postnatal day 7, microionophoretically applied glutamate elevated the acoustically evoked discharge rates of nearly 80% of neurons studied. Although fewer neurons were studied with the use of NMDA, ~65% of these responded to this glutamatergic agonist, and no developmental changes in the percentage of responsive neurons were observed. The actions of NMDA antagonists were studied in a relatively small number of neurons, and results support the supposition that glutamate, or a glutamate-like substance, acts as a CN neurotransmitter throughout postnatal life. 2. Approximately 64% of CN neurons encountered among neonatal animals were unresponsive to acoustic stimulation, even at the highest output levels available (>120 dB SPL). That percentage declined monotonically during the next three postnatal days, such that ~23% of neurons encountered were unresponsive to acoustic stimulation on the third day. Essentially all encountered neurons were responsive to acoustic stimulation by the middle of the second postnatal week. Under conditions of simultaneous glutamate and acoustic stimulation, neurons in this general class of 'acoustically unresponsive' neurons segregated into two groups. Glutamate increased spontaneous discharge rate in 45% of the neurons studied, however, these units remained acoustically unresponsive during combined sound and excitatory amino acid stimulation (group A1). In the second group (A2), 55% of the neurons that were acoustically unresponsive under control (sound alone) conditions responded to the acoustic component of the combined acoustic and glutamate stimulation (the experimental condition) in a frequency-dependent manner. A2 neurons exhibited temporal firing patterns characteristic of acoustically responsive neurons of corresponding age, suggesting that these neurons are functionally connected to the auditory periphery, whereas A1 neurons are not. 3. Dose-response curves were either sigmoidal or linear over the range that measurements were made, and maximum discharge rates evoked by high doses of glutamate in the youngest animals studied tended to be lower than those produced by acoustic stimulation alone in older animals. These results suggest that intrinsic properties contribute to the mechanism(s) that limits neuronal responsiveness. Average dose- response curve slopes were higher for neurons recorded from older animals, also indicating that intrinsic properties regulating dynamic response range are acquired postnatally in the kitten CN.

AB - 1. The effects of glutamate, N-methyl-D-aspartate (NMDA), and NMDA receptor antagonists, D-α-aminoadipate (DαAA) and 2-amino-5- phosphonovalerate (APV), microionophoretically applied onto neurons in the caudal divisions (posteroventral and dorsal subnuclei) of the cochlear nuclear complex (CN), were investigated during postnatal development in kittens with the use of extracellular techniques. From birth through postnatal day 7, microionophoretically applied glutamate elevated the acoustically evoked discharge rates of nearly 80% of neurons studied. Although fewer neurons were studied with the use of NMDA, ~65% of these responded to this glutamatergic agonist, and no developmental changes in the percentage of responsive neurons were observed. The actions of NMDA antagonists were studied in a relatively small number of neurons, and results support the supposition that glutamate, or a glutamate-like substance, acts as a CN neurotransmitter throughout postnatal life. 2. Approximately 64% of CN neurons encountered among neonatal animals were unresponsive to acoustic stimulation, even at the highest output levels available (>120 dB SPL). That percentage declined monotonically during the next three postnatal days, such that ~23% of neurons encountered were unresponsive to acoustic stimulation on the third day. Essentially all encountered neurons were responsive to acoustic stimulation by the middle of the second postnatal week. Under conditions of simultaneous glutamate and acoustic stimulation, neurons in this general class of 'acoustically unresponsive' neurons segregated into two groups. Glutamate increased spontaneous discharge rate in 45% of the neurons studied, however, these units remained acoustically unresponsive during combined sound and excitatory amino acid stimulation (group A1). In the second group (A2), 55% of the neurons that were acoustically unresponsive under control (sound alone) conditions responded to the acoustic component of the combined acoustic and glutamate stimulation (the experimental condition) in a frequency-dependent manner. A2 neurons exhibited temporal firing patterns characteristic of acoustically responsive neurons of corresponding age, suggesting that these neurons are functionally connected to the auditory periphery, whereas A1 neurons are not. 3. Dose-response curves were either sigmoidal or linear over the range that measurements were made, and maximum discharge rates evoked by high doses of glutamate in the youngest animals studied tended to be lower than those produced by acoustic stimulation alone in older animals. These results suggest that intrinsic properties contribute to the mechanism(s) that limits neuronal responsiveness. Average dose- response curve slopes were higher for neurons recorded from older animals, also indicating that intrinsic properties regulating dynamic response range are acquired postnatally in the kitten CN.

UR - http://www.scopus.com/inward/record.url?scp=0027416271&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027416271&partnerID=8YFLogxK

U2 - 10.1152/jn.1993.69.1.201

DO - 10.1152/jn.1993.69.1.201

M3 - Article

C2 - 8094429

AN - SCOPUS:0027416271

VL - 69

SP - 201

EP - 218

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 1

ER -