Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion

Erika I. Boesen, David M. Pollock

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Acute intramedullary infusion of hyperosmotic NaCl, used to simulate a high-salt diet-induced increase of medullary osmolality, increases urine production and endothelin release from the kidney. To determine whether endothelin mediates this diuretic and natriuretic response, urine flow and Na+ excretion rate were measured during acute intramedullary infusion of hyperosmotic NaCl in anesthetized rats, with or without endothelin receptor antagonism. Isosmotic NaCl was infused into the left renal medulla during an equilibration period and 30-min baseline period, followed by hyperosmotic NaCl for two additional 30-min periods. Hyperosmotic NaCl infusion significantly increased urine flow of vehicle-treated rats (from 5.9 ± 0.9 to 11.1 ± 1.8 μl/min). Systemic ETB receptor blockade enhanced this effect (A-192621; from 7.7 ± 1.1 to 18.7 ± 2.9 μl/min; P < 0.05), ETA receptor blockade (ABT-627) had no significant effect alone, but the diuresis was markedly attenuated by combined ABT-627 and A-192621 administration (from 4.4 ± 0.7 to 5.4 ± 0.9 μl/min). Mean arterial pressures overall were not significantly different between groups. Surprisingly, the natriuretic response to hyperosmotic NaCl infusion was not significantly altered by systemic endothelin receptor blockade, and furthermore, intramedullary ETB receptor blockade enhanced the diuretic and natriuretic response to hyperosmotic NaCl infusion. ETA receptor blockade significantly attenuated both the diuretic and natriuretic responses to hyperosmotic NaCl infusion in ETB receptor-deficient sl/sl rats. These results demonstrate an important role of endothelin in mediating diuretic responses to intramedullary infusion of hyperosmotic NaCl. Moreover, these data suggest ETA and ETB receptors are both required for the full diuretic and natriuretic actions of endothelin.

Original languageEnglish (US)
Pages (from-to)F1424-F1432
JournalAmerican Journal of Physiology - Renal Physiology
Volume299
Issue number6
DOIs
StatePublished - Dec 1 2010

Fingerprint

Diuretics
Endothelins
A 192621
Endothelin Receptors
Urine
Kidney
Diuresis
Osmolar Concentration
Arterial Pressure
Salts
Diet
atrasentan

Keywords

  • Blood pressure
  • Endothelin
  • Kidney
  • Salt and water excretion

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion. / Boesen, Erika I.; Pollock, David M.

In: American Journal of Physiology - Renal Physiology, Vol. 299, No. 6, 01.12.2010, p. F1424-F1432.

Research output: Contribution to journalArticle

@article{7ae7ccef518848889d17310e293edb89,
title = "Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion",
abstract = "Acute intramedullary infusion of hyperosmotic NaCl, used to simulate a high-salt diet-induced increase of medullary osmolality, increases urine production and endothelin release from the kidney. To determine whether endothelin mediates this diuretic and natriuretic response, urine flow and Na+ excretion rate were measured during acute intramedullary infusion of hyperosmotic NaCl in anesthetized rats, with or without endothelin receptor antagonism. Isosmotic NaCl was infused into the left renal medulla during an equilibration period and 30-min baseline period, followed by hyperosmotic NaCl for two additional 30-min periods. Hyperosmotic NaCl infusion significantly increased urine flow of vehicle-treated rats (from 5.9 ± 0.9 to 11.1 ± 1.8 μl/min). Systemic ETB receptor blockade enhanced this effect (A-192621; from 7.7 ± 1.1 to 18.7 ± 2.9 μl/min; P < 0.05), ETA receptor blockade (ABT-627) had no significant effect alone, but the diuresis was markedly attenuated by combined ABT-627 and A-192621 administration (from 4.4 ± 0.7 to 5.4 ± 0.9 μl/min). Mean arterial pressures overall were not significantly different between groups. Surprisingly, the natriuretic response to hyperosmotic NaCl infusion was not significantly altered by systemic endothelin receptor blockade, and furthermore, intramedullary ETB receptor blockade enhanced the diuretic and natriuretic response to hyperosmotic NaCl infusion. ETA receptor blockade significantly attenuated both the diuretic and natriuretic responses to hyperosmotic NaCl infusion in ETB receptor-deficient sl/sl rats. These results demonstrate an important role of endothelin in mediating diuretic responses to intramedullary infusion of hyperosmotic NaCl. Moreover, these data suggest ETA and ETB receptors are both required for the full diuretic and natriuretic actions of endothelin.",
keywords = "Blood pressure, Endothelin, Kidney, Salt and water excretion",
author = "Boesen, {Erika I.} and Pollock, {David M.}",
year = "2010",
month = "12",
day = "1",
doi = "10.1152/ajprenal.00015.2010",
language = "English (US)",
volume = "299",
pages = "F1424--F1432",
journal = "American Journal of Physiology - Renal Physiology",
issn = "0363-6127",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion

AU - Boesen, Erika I.

AU - Pollock, David M.

PY - 2010/12/1

Y1 - 2010/12/1

N2 - Acute intramedullary infusion of hyperosmotic NaCl, used to simulate a high-salt diet-induced increase of medullary osmolality, increases urine production and endothelin release from the kidney. To determine whether endothelin mediates this diuretic and natriuretic response, urine flow and Na+ excretion rate were measured during acute intramedullary infusion of hyperosmotic NaCl in anesthetized rats, with or without endothelin receptor antagonism. Isosmotic NaCl was infused into the left renal medulla during an equilibration period and 30-min baseline period, followed by hyperosmotic NaCl for two additional 30-min periods. Hyperosmotic NaCl infusion significantly increased urine flow of vehicle-treated rats (from 5.9 ± 0.9 to 11.1 ± 1.8 μl/min). Systemic ETB receptor blockade enhanced this effect (A-192621; from 7.7 ± 1.1 to 18.7 ± 2.9 μl/min; P < 0.05), ETA receptor blockade (ABT-627) had no significant effect alone, but the diuresis was markedly attenuated by combined ABT-627 and A-192621 administration (from 4.4 ± 0.7 to 5.4 ± 0.9 μl/min). Mean arterial pressures overall were not significantly different between groups. Surprisingly, the natriuretic response to hyperosmotic NaCl infusion was not significantly altered by systemic endothelin receptor blockade, and furthermore, intramedullary ETB receptor blockade enhanced the diuretic and natriuretic response to hyperosmotic NaCl infusion. ETA receptor blockade significantly attenuated both the diuretic and natriuretic responses to hyperosmotic NaCl infusion in ETB receptor-deficient sl/sl rats. These results demonstrate an important role of endothelin in mediating diuretic responses to intramedullary infusion of hyperosmotic NaCl. Moreover, these data suggest ETA and ETB receptors are both required for the full diuretic and natriuretic actions of endothelin.

AB - Acute intramedullary infusion of hyperosmotic NaCl, used to simulate a high-salt diet-induced increase of medullary osmolality, increases urine production and endothelin release from the kidney. To determine whether endothelin mediates this diuretic and natriuretic response, urine flow and Na+ excretion rate were measured during acute intramedullary infusion of hyperosmotic NaCl in anesthetized rats, with or without endothelin receptor antagonism. Isosmotic NaCl was infused into the left renal medulla during an equilibration period and 30-min baseline period, followed by hyperosmotic NaCl for two additional 30-min periods. Hyperosmotic NaCl infusion significantly increased urine flow of vehicle-treated rats (from 5.9 ± 0.9 to 11.1 ± 1.8 μl/min). Systemic ETB receptor blockade enhanced this effect (A-192621; from 7.7 ± 1.1 to 18.7 ± 2.9 μl/min; P < 0.05), ETA receptor blockade (ABT-627) had no significant effect alone, but the diuresis was markedly attenuated by combined ABT-627 and A-192621 administration (from 4.4 ± 0.7 to 5.4 ± 0.9 μl/min). Mean arterial pressures overall were not significantly different between groups. Surprisingly, the natriuretic response to hyperosmotic NaCl infusion was not significantly altered by systemic endothelin receptor blockade, and furthermore, intramedullary ETB receptor blockade enhanced the diuretic and natriuretic response to hyperosmotic NaCl infusion. ETA receptor blockade significantly attenuated both the diuretic and natriuretic responses to hyperosmotic NaCl infusion in ETB receptor-deficient sl/sl rats. These results demonstrate an important role of endothelin in mediating diuretic responses to intramedullary infusion of hyperosmotic NaCl. Moreover, these data suggest ETA and ETB receptors are both required for the full diuretic and natriuretic actions of endothelin.

KW - Blood pressure

KW - Endothelin

KW - Kidney

KW - Salt and water excretion

UR - http://www.scopus.com/inward/record.url?scp=78649972833&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78649972833&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00015.2010

DO - 10.1152/ajprenal.00015.2010

M3 - Article

C2 - 20844020

AN - SCOPUS:78649972833

VL - 299

SP - F1424-F1432

JO - American Journal of Physiology - Renal Physiology

JF - American Journal of Physiology - Renal Physiology

SN - 0363-6127

IS - 6

ER -