Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude

Philippe Malcolm, Denise Martineli Rossi, Christopher Siviy, Sangjun Lee, Brendan Thomas Quinlivan, Martin Grimmer, Conor J. Walsh

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Background: Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions. Methods: Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment. Results: Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions. Conclusions: The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.

Original languageEnglish (US)
Article number72
JournalJournal of NeuroEngineering and Rehabilitation
Volume14
Issue number1
DOIs
StatePublished - Jul 12 2017

Fingerprint

Biomechanical Phenomena
Walking
Ankle
Hip
Population
Direction compound

Keywords

  • Exosuit
  • Kinematics
  • Metabolic
  • Parameter sweep
  • Protocol

ASJC Scopus subject areas

  • Rehabilitation
  • Health Informatics

Cite this

Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude. / Malcolm, Philippe; Rossi, Denise Martineli; Siviy, Christopher; Lee, Sangjun; Quinlivan, Brendan Thomas; Grimmer, Martin; Walsh, Conor J.

In: Journal of NeuroEngineering and Rehabilitation, Vol. 14, No. 1, 72, 12.07.2017.

Research output: Contribution to journalArticle

Malcolm, Philippe ; Rossi, Denise Martineli ; Siviy, Christopher ; Lee, Sangjun ; Quinlivan, Brendan Thomas ; Grimmer, Martin ; Walsh, Conor J. / Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude. In: Journal of NeuroEngineering and Rehabilitation. 2017 ; Vol. 14, No. 1.
@article{02be976fffec4528829292370f5b4153,
title = "Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude",
abstract = "Background: Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions. Methods: Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38{\%} of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment. Results: Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions. Conclusions: The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.",
keywords = "Exosuit, Kinematics, Metabolic, Parameter sweep, Protocol",
author = "Philippe Malcolm and Rossi, {Denise Martineli} and Christopher Siviy and Sangjun Lee and Quinlivan, {Brendan Thomas} and Martin Grimmer and Walsh, {Conor J.}",
year = "2017",
month = "7",
day = "12",
doi = "10.1186/s12984-017-0278-2",
language = "English (US)",
volume = "14",
journal = "Journal of NeuroEngineering and Rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude

AU - Malcolm, Philippe

AU - Rossi, Denise Martineli

AU - Siviy, Christopher

AU - Lee, Sangjun

AU - Quinlivan, Brendan Thomas

AU - Grimmer, Martin

AU - Walsh, Conor J.

PY - 2017/7/12

Y1 - 2017/7/12

N2 - Background: Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions. Methods: Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment. Results: Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions. Conclusions: The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.

AB - Background: Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions. Methods: Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment. Results: Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions. Conclusions: The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.

KW - Exosuit

KW - Kinematics

KW - Metabolic

KW - Parameter sweep

KW - Protocol

UR - http://www.scopus.com/inward/record.url?scp=85023179326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85023179326&partnerID=8YFLogxK

U2 - 10.1186/s12984-017-0278-2

DO - 10.1186/s12984-017-0278-2

M3 - Article

VL - 14

JO - Journal of NeuroEngineering and Rehabilitation

JF - Journal of NeuroEngineering and Rehabilitation

SN - 1743-0003

IS - 1

M1 - 72

ER -