Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system

Elliot J. Lefkowitz, Asit K. Pattnaik, L. Andrew Ball

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Using a complementation assay, we have evaluated the potential of two eukaryotic expression systems to produce functional virus proteins. The first expression system was based on a bovine papilloma virus (BPV) eukaryotic expression vector which contained a copy of the gene for the membrane glycoprotein G of vesicular stomatitis virus (VSV). This vector was transfected into a mouse cell line, and transformed cell clones constitutively expressing VSV G protein were selected. These cell clones were then screened for their ability to support the replication of a temperature-sensitive G mutant of VSV (ts045) at the permissive and nonpermissive temperatures. A 100-fold increase in ts045 titer was observed in some of the G protein-producing cell lines in comparison with nonproducing cells. These results were compared with complementation by VSV G protein expressed from a second expression system utilizing a vaccinia virus (VV) recombinant which produced bacteriophage T7 RNA polymerase. T7 RNA polymerase expressed in cells infected with the vaccinia recombinant produced VSV G transcripts from a plasmid which had been transfected into these cells. This plasmid contained the VSV G gene cloned between T7 RNA polymerase initiation and termination signals. VSV G protein expressed by this system was able to complement ts045 replication at the nonpermissive temperature, and yielded much greater levels of complemented virus than the BPV system. When calcium phosphate-mediated transfection was used to introduce the VSV G plasmid vector into cells infected with the VV recombinant, a complementation efficiency as high as 1500-fold was obtained. Using lipofectin-mediated transfection, a 15,000-fold increase in virus titer could be obtained in G protein-producing cells in contrast to nonproducing cells. At the nonpermissive temperature, yields of temperature-sensitive virus were within 10-fold of the yields obtained at the permissive temperature. Virus produced in this system was shown to be a pseudotype which contained wild-type G protein in the viral envelope but still maintained the temperature-sensitive genotype. This expression system will be used to study the extent to which the integrity of the G coding sequence of wild-type VSV might be altered in the absence of selection pressure for functional G protein during VSV replication.

Original languageEnglish (US)
Pages (from-to)373-383
Number of pages11
JournalVirology
Volume178
Issue number2
DOIs
StatePublished - Oct 1990

Fingerprint

Vesicular Stomatitis
Vaccinia virus
Papilloma
Glycoproteins
Viruses
Proteins
Temperature
GTP-Binding Proteins
Transformed Cell Line
Plasmids
Transfection
Clone Cells
Vaccinia
Membrane Glycoproteins
Virus Replication
Viral Load
Genes
Genotype

ASJC Scopus subject areas

  • Virology

Cite this

Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system. / Lefkowitz, Elliot J.; Pattnaik, Asit K.; Ball, L. Andrew.

In: Virology, Vol. 178, No. 2, 10.1990, p. 373-383.

Research output: Contribution to journalArticle

@article{4eb66a1593a045cd9e239d209c891d97,
title = "Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system",
abstract = "Using a complementation assay, we have evaluated the potential of two eukaryotic expression systems to produce functional virus proteins. The first expression system was based on a bovine papilloma virus (BPV) eukaryotic expression vector which contained a copy of the gene for the membrane glycoprotein G of vesicular stomatitis virus (VSV). This vector was transfected into a mouse cell line, and transformed cell clones constitutively expressing VSV G protein were selected. These cell clones were then screened for their ability to support the replication of a temperature-sensitive G mutant of VSV (ts045) at the permissive and nonpermissive temperatures. A 100-fold increase in ts045 titer was observed in some of the G protein-producing cell lines in comparison with nonproducing cells. These results were compared with complementation by VSV G protein expressed from a second expression system utilizing a vaccinia virus (VV) recombinant which produced bacteriophage T7 RNA polymerase. T7 RNA polymerase expressed in cells infected with the vaccinia recombinant produced VSV G transcripts from a plasmid which had been transfected into these cells. This plasmid contained the VSV G gene cloned between T7 RNA polymerase initiation and termination signals. VSV G protein expressed by this system was able to complement ts045 replication at the nonpermissive temperature, and yielded much greater levels of complemented virus than the BPV system. When calcium phosphate-mediated transfection was used to introduce the VSV G plasmid vector into cells infected with the VV recombinant, a complementation efficiency as high as 1500-fold was obtained. Using lipofectin-mediated transfection, a 15,000-fold increase in virus titer could be obtained in G protein-producing cells in contrast to nonproducing cells. At the nonpermissive temperature, yields of temperature-sensitive virus were within 10-fold of the yields obtained at the permissive temperature. Virus produced in this system was shown to be a pseudotype which contained wild-type G protein in the viral envelope but still maintained the temperature-sensitive genotype. This expression system will be used to study the extent to which the integrity of the G coding sequence of wild-type VSV might be altered in the absence of selection pressure for functional G protein during VSV replication.",
author = "Lefkowitz, {Elliot J.} and Pattnaik, {Asit K.} and Ball, {L. Andrew}",
year = "1990",
month = "10",
doi = "10.1016/0042-6822(90)90334-N",
language = "English (US)",
volume = "178",
pages = "373--383",
journal = "Virology",
issn = "0042-6822",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Complementation of a vesicular stomatitis virus glycoprotein G mutant with wild-type protein expressed from either a bovine papilloma virus or a vaccinia virus vector system

AU - Lefkowitz, Elliot J.

AU - Pattnaik, Asit K.

AU - Ball, L. Andrew

PY - 1990/10

Y1 - 1990/10

N2 - Using a complementation assay, we have evaluated the potential of two eukaryotic expression systems to produce functional virus proteins. The first expression system was based on a bovine papilloma virus (BPV) eukaryotic expression vector which contained a copy of the gene for the membrane glycoprotein G of vesicular stomatitis virus (VSV). This vector was transfected into a mouse cell line, and transformed cell clones constitutively expressing VSV G protein were selected. These cell clones were then screened for their ability to support the replication of a temperature-sensitive G mutant of VSV (ts045) at the permissive and nonpermissive temperatures. A 100-fold increase in ts045 titer was observed in some of the G protein-producing cell lines in comparison with nonproducing cells. These results were compared with complementation by VSV G protein expressed from a second expression system utilizing a vaccinia virus (VV) recombinant which produced bacteriophage T7 RNA polymerase. T7 RNA polymerase expressed in cells infected with the vaccinia recombinant produced VSV G transcripts from a plasmid which had been transfected into these cells. This plasmid contained the VSV G gene cloned between T7 RNA polymerase initiation and termination signals. VSV G protein expressed by this system was able to complement ts045 replication at the nonpermissive temperature, and yielded much greater levels of complemented virus than the BPV system. When calcium phosphate-mediated transfection was used to introduce the VSV G plasmid vector into cells infected with the VV recombinant, a complementation efficiency as high as 1500-fold was obtained. Using lipofectin-mediated transfection, a 15,000-fold increase in virus titer could be obtained in G protein-producing cells in contrast to nonproducing cells. At the nonpermissive temperature, yields of temperature-sensitive virus were within 10-fold of the yields obtained at the permissive temperature. Virus produced in this system was shown to be a pseudotype which contained wild-type G protein in the viral envelope but still maintained the temperature-sensitive genotype. This expression system will be used to study the extent to which the integrity of the G coding sequence of wild-type VSV might be altered in the absence of selection pressure for functional G protein during VSV replication.

AB - Using a complementation assay, we have evaluated the potential of two eukaryotic expression systems to produce functional virus proteins. The first expression system was based on a bovine papilloma virus (BPV) eukaryotic expression vector which contained a copy of the gene for the membrane glycoprotein G of vesicular stomatitis virus (VSV). This vector was transfected into a mouse cell line, and transformed cell clones constitutively expressing VSV G protein were selected. These cell clones were then screened for their ability to support the replication of a temperature-sensitive G mutant of VSV (ts045) at the permissive and nonpermissive temperatures. A 100-fold increase in ts045 titer was observed in some of the G protein-producing cell lines in comparison with nonproducing cells. These results were compared with complementation by VSV G protein expressed from a second expression system utilizing a vaccinia virus (VV) recombinant which produced bacteriophage T7 RNA polymerase. T7 RNA polymerase expressed in cells infected with the vaccinia recombinant produced VSV G transcripts from a plasmid which had been transfected into these cells. This plasmid contained the VSV G gene cloned between T7 RNA polymerase initiation and termination signals. VSV G protein expressed by this system was able to complement ts045 replication at the nonpermissive temperature, and yielded much greater levels of complemented virus than the BPV system. When calcium phosphate-mediated transfection was used to introduce the VSV G plasmid vector into cells infected with the VV recombinant, a complementation efficiency as high as 1500-fold was obtained. Using lipofectin-mediated transfection, a 15,000-fold increase in virus titer could be obtained in G protein-producing cells in contrast to nonproducing cells. At the nonpermissive temperature, yields of temperature-sensitive virus were within 10-fold of the yields obtained at the permissive temperature. Virus produced in this system was shown to be a pseudotype which contained wild-type G protein in the viral envelope but still maintained the temperature-sensitive genotype. This expression system will be used to study the extent to which the integrity of the G coding sequence of wild-type VSV might be altered in the absence of selection pressure for functional G protein during VSV replication.

UR - http://www.scopus.com/inward/record.url?scp=0025066209&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025066209&partnerID=8YFLogxK

U2 - 10.1016/0042-6822(90)90334-N

DO - 10.1016/0042-6822(90)90334-N

M3 - Article

C2 - 2171187

AN - SCOPUS:0025066209

VL - 178

SP - 373

EP - 383

JO - Virology

JF - Virology

SN - 0042-6822

IS - 2

ER -