Combinatorial fractal geometry with a biological application

John Konvalina, Igor Konfisakhar, Jack Heidel, Jim Rogers

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The solution to a deceptively simple combinatorial problem on bit strings results in the emergence of a fractal related to the Sierpinski Gasket. The result is generalized to higher dimensions and applied to the study of global dynamics in Boolean network models of complex biological systems.

Original languageEnglish (US)
Pages (from-to)133-142
Number of pages10
JournalFractals
Volume14
Issue number2
DOIs
StatePublished - Jun 1 2006

Fingerprint

Combinatorial Geometry
Fractal Geometry
Biological systems
Fractals
Boolean Model
Sierpinski Gasket
Boolean Networks
Geometry
Global Dynamics
Combinatorial Problems
Biological Systems
Network Model
Higher Dimensions
Fractal
Complex Systems
Strings

Keywords

  • Boolean Networks
  • Box-Counting Method
  • Combinatorics
  • Entropy
  • Fractal Geometry
  • Sierpinski Gasket
  • Stirling Numbers

ASJC Scopus subject areas

  • Modeling and Simulation
  • Geometry and Topology
  • Applied Mathematics

Cite this

Combinatorial fractal geometry with a biological application. / Konvalina, John; Konfisakhar, Igor; Heidel, Jack; Rogers, Jim.

In: Fractals, Vol. 14, No. 2, 01.06.2006, p. 133-142.

Research output: Contribution to journalArticle

Konvalina, J, Konfisakhar, I, Heidel, J & Rogers, J 2006, 'Combinatorial fractal geometry with a biological application', Fractals, vol. 14, no. 2, pp. 133-142. https://doi.org/10.1142/S0218348X06003118
Konvalina, John ; Konfisakhar, Igor ; Heidel, Jack ; Rogers, Jim. / Combinatorial fractal geometry with a biological application. In: Fractals. 2006 ; Vol. 14, No. 2. pp. 133-142.
@article{4f206cdb1289452a9c109035525933a7,
title = "Combinatorial fractal geometry with a biological application",
abstract = "The solution to a deceptively simple combinatorial problem on bit strings results in the emergence of a fractal related to the Sierpinski Gasket. The result is generalized to higher dimensions and applied to the study of global dynamics in Boolean network models of complex biological systems.",
keywords = "Boolean Networks, Box-Counting Method, Combinatorics, Entropy, Fractal Geometry, Sierpinski Gasket, Stirling Numbers",
author = "John Konvalina and Igor Konfisakhar and Jack Heidel and Jim Rogers",
year = "2006",
month = "6",
day = "1",
doi = "10.1142/S0218348X06003118",
language = "English (US)",
volume = "14",
pages = "133--142",
journal = "Fractals",
issn = "0218-348X",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "2",

}

TY - JOUR

T1 - Combinatorial fractal geometry with a biological application

AU - Konvalina, John

AU - Konfisakhar, Igor

AU - Heidel, Jack

AU - Rogers, Jim

PY - 2006/6/1

Y1 - 2006/6/1

N2 - The solution to a deceptively simple combinatorial problem on bit strings results in the emergence of a fractal related to the Sierpinski Gasket. The result is generalized to higher dimensions and applied to the study of global dynamics in Boolean network models of complex biological systems.

AB - The solution to a deceptively simple combinatorial problem on bit strings results in the emergence of a fractal related to the Sierpinski Gasket. The result is generalized to higher dimensions and applied to the study of global dynamics in Boolean network models of complex biological systems.

KW - Boolean Networks

KW - Box-Counting Method

KW - Combinatorics

KW - Entropy

KW - Fractal Geometry

KW - Sierpinski Gasket

KW - Stirling Numbers

UR - http://www.scopus.com/inward/record.url?scp=33744774738&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33744774738&partnerID=8YFLogxK

U2 - 10.1142/S0218348X06003118

DO - 10.1142/S0218348X06003118

M3 - Article

AN - SCOPUS:33744774738

VL - 14

SP - 133

EP - 142

JO - Fractals

JF - Fractals

SN - 0218-348X

IS - 2

ER -