Characterization of Trpm1 desensitization in ON bipolar cells and its role in downstream signalling

Tejinder Kaur, Scott Nawy

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

ON bipolar cells invert the sign of light responses from hyperpolarizing to depolarizing before passing them on to ganglion cells. Light responses are generated when a cation channel, recently identified as Trpm1, opens. The amplitude of the light response rapidly decays due to desensitization of Trpm1 current. The role of Trpm1 desensitization in shaping light responses both in bipolar and downstream ganglion cells has not been well characterized. Here we show that two parameters, the amount and the rate of recovery from desensitization, depend on the strength of the presynaptic stimulus. Stimuli that activate less than 20% of the maximum Trpm1 current did not promote any detectable desensitization, even for prolonged periods. Beyond this threshold there was a linear relationship between the amount of desensitization and the fractional Trpm1 current. In response to stimuli that open all available channels, desensitization reduced the response to approximately 40% of the peak, with a time constant of 1 s, and recovery was slow, with a time constant of more than 20 s. In dye-filled bipolar cells classified as transient or sustained using morphological criteria, there were no significant differences in Trpm1 desensitization parameters. Trpm1 activation evoked robust EPSCs in ganglion cells, and removal of Trpm1 desensitization strongly augmented a sustained component of the ganglion cell EPSC irrespective of whether ganglion cells were of the ON or ON/OFF type. We conclude that Trpm1 desensitization impacts the kinetics of ganglion cell EPSCs, but does not underlie the sustained/transient dichotomy of neurons in the ON pathway.

Original languageEnglish (US)
Pages (from-to)179-192
Number of pages14
JournalJournal of Physiology
Volume590
Issue number1
DOIs
StatePublished - Jan 1 2012

Fingerprint

Ganglia
Light
Cellular Structures
Cations
Coloring Agents
Neurons

ASJC Scopus subject areas

  • Physiology

Cite this

Characterization of Trpm1 desensitization in ON bipolar cells and its role in downstream signalling. / Kaur, Tejinder; Nawy, Scott.

In: Journal of Physiology, Vol. 590, No. 1, 01.01.2012, p. 179-192.

Research output: Contribution to journalArticle

@article{24b746afe2cf452097c2282b04a10193,
title = "Characterization of Trpm1 desensitization in ON bipolar cells and its role in downstream signalling",
abstract = "ON bipolar cells invert the sign of light responses from hyperpolarizing to depolarizing before passing them on to ganglion cells. Light responses are generated when a cation channel, recently identified as Trpm1, opens. The amplitude of the light response rapidly decays due to desensitization of Trpm1 current. The role of Trpm1 desensitization in shaping light responses both in bipolar and downstream ganglion cells has not been well characterized. Here we show that two parameters, the amount and the rate of recovery from desensitization, depend on the strength of the presynaptic stimulus. Stimuli that activate less than 20{\%} of the maximum Trpm1 current did not promote any detectable desensitization, even for prolonged periods. Beyond this threshold there was a linear relationship between the amount of desensitization and the fractional Trpm1 current. In response to stimuli that open all available channels, desensitization reduced the response to approximately 40{\%} of the peak, with a time constant of 1 s, and recovery was slow, with a time constant of more than 20 s. In dye-filled bipolar cells classified as transient or sustained using morphological criteria, there were no significant differences in Trpm1 desensitization parameters. Trpm1 activation evoked robust EPSCs in ganglion cells, and removal of Trpm1 desensitization strongly augmented a sustained component of the ganglion cell EPSC irrespective of whether ganglion cells were of the ON or ON/OFF type. We conclude that Trpm1 desensitization impacts the kinetics of ganglion cell EPSCs, but does not underlie the sustained/transient dichotomy of neurons in the ON pathway.",
author = "Tejinder Kaur and Scott Nawy",
year = "2012",
month = "1",
day = "1",
doi = "10.1113/jphysiol.2011.218974",
language = "English (US)",
volume = "590",
pages = "179--192",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - Characterization of Trpm1 desensitization in ON bipolar cells and its role in downstream signalling

AU - Kaur, Tejinder

AU - Nawy, Scott

PY - 2012/1/1

Y1 - 2012/1/1

N2 - ON bipolar cells invert the sign of light responses from hyperpolarizing to depolarizing before passing them on to ganglion cells. Light responses are generated when a cation channel, recently identified as Trpm1, opens. The amplitude of the light response rapidly decays due to desensitization of Trpm1 current. The role of Trpm1 desensitization in shaping light responses both in bipolar and downstream ganglion cells has not been well characterized. Here we show that two parameters, the amount and the rate of recovery from desensitization, depend on the strength of the presynaptic stimulus. Stimuli that activate less than 20% of the maximum Trpm1 current did not promote any detectable desensitization, even for prolonged periods. Beyond this threshold there was a linear relationship between the amount of desensitization and the fractional Trpm1 current. In response to stimuli that open all available channels, desensitization reduced the response to approximately 40% of the peak, with a time constant of 1 s, and recovery was slow, with a time constant of more than 20 s. In dye-filled bipolar cells classified as transient or sustained using morphological criteria, there were no significant differences in Trpm1 desensitization parameters. Trpm1 activation evoked robust EPSCs in ganglion cells, and removal of Trpm1 desensitization strongly augmented a sustained component of the ganglion cell EPSC irrespective of whether ganglion cells were of the ON or ON/OFF type. We conclude that Trpm1 desensitization impacts the kinetics of ganglion cell EPSCs, but does not underlie the sustained/transient dichotomy of neurons in the ON pathway.

AB - ON bipolar cells invert the sign of light responses from hyperpolarizing to depolarizing before passing them on to ganglion cells. Light responses are generated when a cation channel, recently identified as Trpm1, opens. The amplitude of the light response rapidly decays due to desensitization of Trpm1 current. The role of Trpm1 desensitization in shaping light responses both in bipolar and downstream ganglion cells has not been well characterized. Here we show that two parameters, the amount and the rate of recovery from desensitization, depend on the strength of the presynaptic stimulus. Stimuli that activate less than 20% of the maximum Trpm1 current did not promote any detectable desensitization, even for prolonged periods. Beyond this threshold there was a linear relationship between the amount of desensitization and the fractional Trpm1 current. In response to stimuli that open all available channels, desensitization reduced the response to approximately 40% of the peak, with a time constant of 1 s, and recovery was slow, with a time constant of more than 20 s. In dye-filled bipolar cells classified as transient or sustained using morphological criteria, there were no significant differences in Trpm1 desensitization parameters. Trpm1 activation evoked robust EPSCs in ganglion cells, and removal of Trpm1 desensitization strongly augmented a sustained component of the ganglion cell EPSC irrespective of whether ganglion cells were of the ON or ON/OFF type. We conclude that Trpm1 desensitization impacts the kinetics of ganglion cell EPSCs, but does not underlie the sustained/transient dichotomy of neurons in the ON pathway.

UR - http://www.scopus.com/inward/record.url?scp=84855173470&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84855173470&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2011.218974

DO - 10.1113/jphysiol.2011.218974

M3 - Article

C2 - 22041187

AN - SCOPUS:84855173470

VL - 590

SP - 179

EP - 192

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 1

ER -