Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor

Navasona Krishnan, Donald F Becker

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

PutA is a bifunctional flavoenzyme in bacteria that catalyzes the four-electron oxidation of proline to glutamate. In certain prokaryotes such as Escherichia coli, PutA is also a transcriptional repressor of the proline utilization (put) genes and thus is trifunctional. In this work, we have begun to assess differences between bifunctional and trifunctional PutA enzymes by examining the PutA protein from Bradyrhizobium japonicum (BjPutA). Primary structure analysis of BjPutA shows it lacks the DNA-binding domain of E. coli PutA (EcPutA). Consistent with this prediction, purified BjPutA does not exhibit DNA-binding activity in native gel mobility shift assays with promoter regions of the putA gene from B. japonicum. The catalytic and redox properties of BjPutA were characterized and a reduction potential (Em) value of -0.132 V (pH 7.5) was determined for the bound FAD/FADH2 couple in BjPutA that is significantly more negative (∼55 mV) than the Em for EcPutA-bound FAD. The more negative Em value thermodynamically limits proline reduction of the FAD cofactor in BjPutA. In the presence of phospholipids, reduction of BjPutA is stimulated, suggesting lipids influence the FAD redox environment. Accordingly, an Em value of -0.114 V (pH 7.5) was determined for BjPutA-bound FAD in the presence of polar lipids. The molecular basis for the lower reduction potential of FAD in BjPutA relative to EcPutA was explored by site-directed mutagenesis. Amino acid sequence alignment between BjPutA and EcPutA indicates only one difference in active site residues near the isoalloxazine ring of FAD: Val402 in EcPutA is substituted at the analogous position in BjPutA with Ala310. Replacement of A310 by Val in the BjPutA mutant A310V raised the reduction potential of bound FAD relative to wild-type BjPutA to an Em value of -0.09 V (pH 7.5). The >40-mV positive shift in the potential of the BjPutA mutant A310V suggests that the corresponding Val residue in EcPutA helps poise the FAD redox potential for thermodynamically favored proline reduction thereby allowing EcPutA to be efficiently regulated by proline availability. Limited proteolysis of BjPutA under reducing conditions shows FAD reduction does not influence BjPutA conformation indicating further that the redox dependent regulation observed with EcPutA may be limited to trifunctional PutA homologues.

Original languageEnglish (US)
Pages (from-to)9130-9139
Number of pages10
JournalBiochemistry
Volume44
Issue number25
DOIs
StatePublished - Jun 28 2005

Fingerprint

Bradyrhizobium
Flavin-Adenine Dinucleotide
Proline
Catalytic Domain
Escherichia coli
Oxidation-Reduction
Genes
Proteolysis
Lipids
Mutagenesis
Sequence Alignment
DNA
Electrophoretic Mobility Shift Assay
Site-Directed Mutagenesis
Genetic Promoter Regions
Conformations
Glutamic Acid
Amino Acid Sequence
Assays
Phospholipids

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{e4a36dce1e314402a5960a7a153d82f6,
title = "Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor",
abstract = "PutA is a bifunctional flavoenzyme in bacteria that catalyzes the four-electron oxidation of proline to glutamate. In certain prokaryotes such as Escherichia coli, PutA is also a transcriptional repressor of the proline utilization (put) genes and thus is trifunctional. In this work, we have begun to assess differences between bifunctional and trifunctional PutA enzymes by examining the PutA protein from Bradyrhizobium japonicum (BjPutA). Primary structure analysis of BjPutA shows it lacks the DNA-binding domain of E. coli PutA (EcPutA). Consistent with this prediction, purified BjPutA does not exhibit DNA-binding activity in native gel mobility shift assays with promoter regions of the putA gene from B. japonicum. The catalytic and redox properties of BjPutA were characterized and a reduction potential (Em) value of -0.132 V (pH 7.5) was determined for the bound FAD/FADH2 couple in BjPutA that is significantly more negative (∼55 mV) than the Em for EcPutA-bound FAD. The more negative Em value thermodynamically limits proline reduction of the FAD cofactor in BjPutA. In the presence of phospholipids, reduction of BjPutA is stimulated, suggesting lipids influence the FAD redox environment. Accordingly, an Em value of -0.114 V (pH 7.5) was determined for BjPutA-bound FAD in the presence of polar lipids. The molecular basis for the lower reduction potential of FAD in BjPutA relative to EcPutA was explored by site-directed mutagenesis. Amino acid sequence alignment between BjPutA and EcPutA indicates only one difference in active site residues near the isoalloxazine ring of FAD: Val402 in EcPutA is substituted at the analogous position in BjPutA with Ala310. Replacement of A310 by Val in the BjPutA mutant A310V raised the reduction potential of bound FAD relative to wild-type BjPutA to an Em value of -0.09 V (pH 7.5). The >40-mV positive shift in the potential of the BjPutA mutant A310V suggests that the corresponding Val residue in EcPutA helps poise the FAD redox potential for thermodynamically favored proline reduction thereby allowing EcPutA to be efficiently regulated by proline availability. Limited proteolysis of BjPutA under reducing conditions shows FAD reduction does not influence BjPutA conformation indicating further that the redox dependent regulation observed with EcPutA may be limited to trifunctional PutA homologues.",
author = "Navasona Krishnan and Becker, {Donald F}",
year = "2005",
month = "6",
day = "28",
doi = "10.1021/bi050629k",
language = "English (US)",
volume = "44",
pages = "9130--9139",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "25",

}

TY - JOUR

T1 - Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor

AU - Krishnan, Navasona

AU - Becker, Donald F

PY - 2005/6/28

Y1 - 2005/6/28

N2 - PutA is a bifunctional flavoenzyme in bacteria that catalyzes the four-electron oxidation of proline to glutamate. In certain prokaryotes such as Escherichia coli, PutA is also a transcriptional repressor of the proline utilization (put) genes and thus is trifunctional. In this work, we have begun to assess differences between bifunctional and trifunctional PutA enzymes by examining the PutA protein from Bradyrhizobium japonicum (BjPutA). Primary structure analysis of BjPutA shows it lacks the DNA-binding domain of E. coli PutA (EcPutA). Consistent with this prediction, purified BjPutA does not exhibit DNA-binding activity in native gel mobility shift assays with promoter regions of the putA gene from B. japonicum. The catalytic and redox properties of BjPutA were characterized and a reduction potential (Em) value of -0.132 V (pH 7.5) was determined for the bound FAD/FADH2 couple in BjPutA that is significantly more negative (∼55 mV) than the Em for EcPutA-bound FAD. The more negative Em value thermodynamically limits proline reduction of the FAD cofactor in BjPutA. In the presence of phospholipids, reduction of BjPutA is stimulated, suggesting lipids influence the FAD redox environment. Accordingly, an Em value of -0.114 V (pH 7.5) was determined for BjPutA-bound FAD in the presence of polar lipids. The molecular basis for the lower reduction potential of FAD in BjPutA relative to EcPutA was explored by site-directed mutagenesis. Amino acid sequence alignment between BjPutA and EcPutA indicates only one difference in active site residues near the isoalloxazine ring of FAD: Val402 in EcPutA is substituted at the analogous position in BjPutA with Ala310. Replacement of A310 by Val in the BjPutA mutant A310V raised the reduction potential of bound FAD relative to wild-type BjPutA to an Em value of -0.09 V (pH 7.5). The >40-mV positive shift in the potential of the BjPutA mutant A310V suggests that the corresponding Val residue in EcPutA helps poise the FAD redox potential for thermodynamically favored proline reduction thereby allowing EcPutA to be efficiently regulated by proline availability. Limited proteolysis of BjPutA under reducing conditions shows FAD reduction does not influence BjPutA conformation indicating further that the redox dependent regulation observed with EcPutA may be limited to trifunctional PutA homologues.

AB - PutA is a bifunctional flavoenzyme in bacteria that catalyzes the four-electron oxidation of proline to glutamate. In certain prokaryotes such as Escherichia coli, PutA is also a transcriptional repressor of the proline utilization (put) genes and thus is trifunctional. In this work, we have begun to assess differences between bifunctional and trifunctional PutA enzymes by examining the PutA protein from Bradyrhizobium japonicum (BjPutA). Primary structure analysis of BjPutA shows it lacks the DNA-binding domain of E. coli PutA (EcPutA). Consistent with this prediction, purified BjPutA does not exhibit DNA-binding activity in native gel mobility shift assays with promoter regions of the putA gene from B. japonicum. The catalytic and redox properties of BjPutA were characterized and a reduction potential (Em) value of -0.132 V (pH 7.5) was determined for the bound FAD/FADH2 couple in BjPutA that is significantly more negative (∼55 mV) than the Em for EcPutA-bound FAD. The more negative Em value thermodynamically limits proline reduction of the FAD cofactor in BjPutA. In the presence of phospholipids, reduction of BjPutA is stimulated, suggesting lipids influence the FAD redox environment. Accordingly, an Em value of -0.114 V (pH 7.5) was determined for BjPutA-bound FAD in the presence of polar lipids. The molecular basis for the lower reduction potential of FAD in BjPutA relative to EcPutA was explored by site-directed mutagenesis. Amino acid sequence alignment between BjPutA and EcPutA indicates only one difference in active site residues near the isoalloxazine ring of FAD: Val402 in EcPutA is substituted at the analogous position in BjPutA with Ala310. Replacement of A310 by Val in the BjPutA mutant A310V raised the reduction potential of bound FAD relative to wild-type BjPutA to an Em value of -0.09 V (pH 7.5). The >40-mV positive shift in the potential of the BjPutA mutant A310V suggests that the corresponding Val residue in EcPutA helps poise the FAD redox potential for thermodynamically favored proline reduction thereby allowing EcPutA to be efficiently regulated by proline availability. Limited proteolysis of BjPutA under reducing conditions shows FAD reduction does not influence BjPutA conformation indicating further that the redox dependent regulation observed with EcPutA may be limited to trifunctional PutA homologues.

UR - http://www.scopus.com/inward/record.url?scp=21744454349&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=21744454349&partnerID=8YFLogxK

U2 - 10.1021/bi050629k

DO - 10.1021/bi050629k

M3 - Article

VL - 44

SP - 9130

EP - 9139

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 25

ER -