Carbenoxolone blocks the Light-Evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors

Jayne R. Bramley, Erin M. Wiles, Patricia J. Sollars, Gary E. Pickard

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Background: Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca 2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca 2+ signals in ipRGCs independent of gap junction blockade. Methodology/Principal Findings: To test the possibility that carbenoxolone directly inhibits light-evoked Ca 2+ responses in ipRGCs, the light-evoked rise in intracellular Ca 2+ ([Ca 2+] i) was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 μM concentrations completely abolished the light-evoked rise in [Ca 2+] i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable. Conclusions/Significance: We demonstrate that the light-evoked rise in [Ca 2+] i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca 2+] i in isolated ipRGCs is almost entirely due to Ca 2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca 2+] i in ipRGCs by blocking L-type voltage-gated Ca 2+ channels. The ability of carbenoxolone to block evoked Ca 2+ responses must be taken into account when interpreting the effects of this pharmacological agent on retinal or other neuronal circuits, particularly if a change in [Ca 2+] i is the output being measured.

Original languageEnglish (US)
Article numbere22721
JournalPloS one
Volume6
Issue number7
DOIs
StatePublished - Aug 3 2011

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this