Cancer cachexia's metabolic signature in a murine model confirms a distinct entity

Hirak Der-Torossian, Scott A. Asher, Jason H. Winnike, Ashley Wysong, Xiaoying Yin, Monte S. Willis, Thomas M. O'Connell, Marion E. Couch

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Despite recent consensus definitions, lack of specific biomarkers remains a hurdle towards a more accurate and efficient diagnosis of cancer cachexia, distinguishing cachexia as a separate entity from other wasting syndromes. In a previous pilot study, we have shown that cancer-cachectic mice have a unique metabolic fingerprint with distinct glucose and lipid alterations compared to healthy controls. Further metabolomics studies were carried out to investigate differences in metabolic profiles of cancer-cachectic mice to tumor-bearing non-cachectic mice, calorie-restricted mice, and surgically treated cancer-cachectic mice. CD2F1 mice were divided into: (1) Cachexia Group received cachexia-inducing C26 undifferentiated colon carcinoma cells; (2) Tumor-Burden Group received, non-cachectic, P388 lymphoma cells; (3) Caloric-Restriction Group, remaining cancer-free, but subjected to caloric-restriction; (4) Surgery Group, similar to Cachexia Group, but tumors resected mid-experiment; and (5) Control Group aged intact. Baseline, mid-experiment and final serum samples were collected for 1H NMR spectroscopic analysis. After data reduction, unsupervised principal component analysis and orthogonal projections to latent structures analyses demonstrate that the unique metabolic fingerprint is independent of tumor-burden and distinct from profiles of caloric-restriction and aging. Hyperlipidemia, hyperglycemia, and reduced branched-chain amino acids distinguish cachexia from other groups. Furthermore, the profile of surgically treated mice differs from that of cachectic mice, reverting to a profile more congruent with healthy controls indicating cachexia is amenable to correction where surgical cure is possible. That metabolomic analysis of murine serum is able to differentiate cachexia from tumor-burden and caloric-restriction warrants similar translational investigations in patients to explore cancer cachexia's unique biomarkers.

Original languageEnglish (US)
Pages (from-to)730-739
Number of pages10
JournalMetabolomics
Volume9
Issue number3
DOIs
StatePublished - Jun 1 2013

Fingerprint

Cachexia
Tumors
Caloric Restriction
Biomarkers
Neoplasms
Tumor Burden
Bearings (structural)
Metabolomics
Branched Chain Amino Acids
Dermatoglyphics
Spectroscopic analysis
Principal component analysis
Surgery
Data reduction
Aging of materials
Wasting Syndrome
Experiments
Cells
Nuclear magnetic resonance
Lipids

Keywords

  • Branched-chain amino acids
  • Cachexia
  • Caloric-restriction
  • Cancer
  • Metabolomics
  • NMR spectroscopy

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Clinical Biochemistry

Cite this

Der-Torossian, H., Asher, S. A., Winnike, J. H., Wysong, A., Yin, X., Willis, M. S., ... Couch, M. E. (2013). Cancer cachexia's metabolic signature in a murine model confirms a distinct entity. Metabolomics, 9(3), 730-739. https://doi.org/10.1007/s11306-012-0485-6

Cancer cachexia's metabolic signature in a murine model confirms a distinct entity. / Der-Torossian, Hirak; Asher, Scott A.; Winnike, Jason H.; Wysong, Ashley; Yin, Xiaoying; Willis, Monte S.; O'Connell, Thomas M.; Couch, Marion E.

In: Metabolomics, Vol. 9, No. 3, 01.06.2013, p. 730-739.

Research output: Contribution to journalArticle

Der-Torossian, H, Asher, SA, Winnike, JH, Wysong, A, Yin, X, Willis, MS, O'Connell, TM & Couch, ME 2013, 'Cancer cachexia's metabolic signature in a murine model confirms a distinct entity', Metabolomics, vol. 9, no. 3, pp. 730-739. https://doi.org/10.1007/s11306-012-0485-6
Der-Torossian, Hirak ; Asher, Scott A. ; Winnike, Jason H. ; Wysong, Ashley ; Yin, Xiaoying ; Willis, Monte S. ; O'Connell, Thomas M. ; Couch, Marion E. / Cancer cachexia's metabolic signature in a murine model confirms a distinct entity. In: Metabolomics. 2013 ; Vol. 9, No. 3. pp. 730-739.
@article{1c21859e34ad4d1394b2797bf0bf46d8,
title = "Cancer cachexia's metabolic signature in a murine model confirms a distinct entity",
abstract = "Despite recent consensus definitions, lack of specific biomarkers remains a hurdle towards a more accurate and efficient diagnosis of cancer cachexia, distinguishing cachexia as a separate entity from other wasting syndromes. In a previous pilot study, we have shown that cancer-cachectic mice have a unique metabolic fingerprint with distinct glucose and lipid alterations compared to healthy controls. Further metabolomics studies were carried out to investigate differences in metabolic profiles of cancer-cachectic mice to tumor-bearing non-cachectic mice, calorie-restricted mice, and surgically treated cancer-cachectic mice. CD2F1 mice were divided into: (1) Cachexia Group received cachexia-inducing C26 undifferentiated colon carcinoma cells; (2) Tumor-Burden Group received, non-cachectic, P388 lymphoma cells; (3) Caloric-Restriction Group, remaining cancer-free, but subjected to caloric-restriction; (4) Surgery Group, similar to Cachexia Group, but tumors resected mid-experiment; and (5) Control Group aged intact. Baseline, mid-experiment and final serum samples were collected for 1H NMR spectroscopic analysis. After data reduction, unsupervised principal component analysis and orthogonal projections to latent structures analyses demonstrate that the unique metabolic fingerprint is independent of tumor-burden and distinct from profiles of caloric-restriction and aging. Hyperlipidemia, hyperglycemia, and reduced branched-chain amino acids distinguish cachexia from other groups. Furthermore, the profile of surgically treated mice differs from that of cachectic mice, reverting to a profile more congruent with healthy controls indicating cachexia is amenable to correction where surgical cure is possible. That metabolomic analysis of murine serum is able to differentiate cachexia from tumor-burden and caloric-restriction warrants similar translational investigations in patients to explore cancer cachexia's unique biomarkers.",
keywords = "Branched-chain amino acids, Cachexia, Caloric-restriction, Cancer, Metabolomics, NMR spectroscopy",
author = "Hirak Der-Torossian and Asher, {Scott A.} and Winnike, {Jason H.} and Ashley Wysong and Xiaoying Yin and Willis, {Monte S.} and O'Connell, {Thomas M.} and Couch, {Marion E.}",
year = "2013",
month = "6",
day = "1",
doi = "10.1007/s11306-012-0485-6",
language = "English (US)",
volume = "9",
pages = "730--739",
journal = "Metabolomics",
issn = "1573-3882",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Cancer cachexia's metabolic signature in a murine model confirms a distinct entity

AU - Der-Torossian, Hirak

AU - Asher, Scott A.

AU - Winnike, Jason H.

AU - Wysong, Ashley

AU - Yin, Xiaoying

AU - Willis, Monte S.

AU - O'Connell, Thomas M.

AU - Couch, Marion E.

PY - 2013/6/1

Y1 - 2013/6/1

N2 - Despite recent consensus definitions, lack of specific biomarkers remains a hurdle towards a more accurate and efficient diagnosis of cancer cachexia, distinguishing cachexia as a separate entity from other wasting syndromes. In a previous pilot study, we have shown that cancer-cachectic mice have a unique metabolic fingerprint with distinct glucose and lipid alterations compared to healthy controls. Further metabolomics studies were carried out to investigate differences in metabolic profiles of cancer-cachectic mice to tumor-bearing non-cachectic mice, calorie-restricted mice, and surgically treated cancer-cachectic mice. CD2F1 mice were divided into: (1) Cachexia Group received cachexia-inducing C26 undifferentiated colon carcinoma cells; (2) Tumor-Burden Group received, non-cachectic, P388 lymphoma cells; (3) Caloric-Restriction Group, remaining cancer-free, but subjected to caloric-restriction; (4) Surgery Group, similar to Cachexia Group, but tumors resected mid-experiment; and (5) Control Group aged intact. Baseline, mid-experiment and final serum samples were collected for 1H NMR spectroscopic analysis. After data reduction, unsupervised principal component analysis and orthogonal projections to latent structures analyses demonstrate that the unique metabolic fingerprint is independent of tumor-burden and distinct from profiles of caloric-restriction and aging. Hyperlipidemia, hyperglycemia, and reduced branched-chain amino acids distinguish cachexia from other groups. Furthermore, the profile of surgically treated mice differs from that of cachectic mice, reverting to a profile more congruent with healthy controls indicating cachexia is amenable to correction where surgical cure is possible. That metabolomic analysis of murine serum is able to differentiate cachexia from tumor-burden and caloric-restriction warrants similar translational investigations in patients to explore cancer cachexia's unique biomarkers.

AB - Despite recent consensus definitions, lack of specific biomarkers remains a hurdle towards a more accurate and efficient diagnosis of cancer cachexia, distinguishing cachexia as a separate entity from other wasting syndromes. In a previous pilot study, we have shown that cancer-cachectic mice have a unique metabolic fingerprint with distinct glucose and lipid alterations compared to healthy controls. Further metabolomics studies were carried out to investigate differences in metabolic profiles of cancer-cachectic mice to tumor-bearing non-cachectic mice, calorie-restricted mice, and surgically treated cancer-cachectic mice. CD2F1 mice were divided into: (1) Cachexia Group received cachexia-inducing C26 undifferentiated colon carcinoma cells; (2) Tumor-Burden Group received, non-cachectic, P388 lymphoma cells; (3) Caloric-Restriction Group, remaining cancer-free, but subjected to caloric-restriction; (4) Surgery Group, similar to Cachexia Group, but tumors resected mid-experiment; and (5) Control Group aged intact. Baseline, mid-experiment and final serum samples were collected for 1H NMR spectroscopic analysis. After data reduction, unsupervised principal component analysis and orthogonal projections to latent structures analyses demonstrate that the unique metabolic fingerprint is independent of tumor-burden and distinct from profiles of caloric-restriction and aging. Hyperlipidemia, hyperglycemia, and reduced branched-chain amino acids distinguish cachexia from other groups. Furthermore, the profile of surgically treated mice differs from that of cachectic mice, reverting to a profile more congruent with healthy controls indicating cachexia is amenable to correction where surgical cure is possible. That metabolomic analysis of murine serum is able to differentiate cachexia from tumor-burden and caloric-restriction warrants similar translational investigations in patients to explore cancer cachexia's unique biomarkers.

KW - Branched-chain amino acids

KW - Cachexia

KW - Caloric-restriction

KW - Cancer

KW - Metabolomics

KW - NMR spectroscopy

UR - http://www.scopus.com/inward/record.url?scp=84877600815&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84877600815&partnerID=8YFLogxK

U2 - 10.1007/s11306-012-0485-6

DO - 10.1007/s11306-012-0485-6

M3 - Article

VL - 9

SP - 730

EP - 739

JO - Metabolomics

JF - Metabolomics

SN - 1573-3882

IS - 3

ER -