Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors

N. Babai, C. W. Morgans, Wallace B Thoreson

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

We tested whether calcium-induced calcium release (CICR) contributes to synaptic release from rods in mammalian retina. Electron micrographs and immunofluorescent double labeling for the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and synaptic ribbon protein, ribeye, showed a close association between ER and synaptic ribbons in mouse rod terminals. Stimulating CICR with 10 μM ryanodine evoked Ca2+ increases in rod terminals from mouse retinal slices visualized using confocal microscopy with the Ca2+-sensitive dye, Fluo-4. Ryanodine also stimulated membrane depolarization of individual mouse rods. Inhibiting CICR with a high concentration of ryanodine (100 μM) reduced the electroretinogram (ERG) b-wave but not a-wave consistent with inhibition of synaptic transmission from rods. Ryanodine (100 μM) also inhibited light-evoked voltage responses of individual rod bipolar cells (RBCs) and presumptive horizontal cells recorded with perforated patch recording techniques. A presynaptic site of action for ryanodine's effects is further indicated by the finding that ryanodine (100 μM) did not alter currents evoked in voltage-clamped RBCs by puffing the mGluR6 antagonist, (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), onto bipolar cell dendrites in the presence of the mGluR6 agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4). Ryanodine (100 μM) also inhibited glutamatergic outward currents in RBCs evoked by electrical stimulation of rods using electrodes placed in the outer segment layer. Together, these results indicate that, like amphibian retina, CICR contributes to synaptic release from mammalian (mouse) rods. By boosting synaptic release in darkness, CICR may improve the detection of small luminance changes by post-synaptic neurons.

Original languageEnglish (US)
Pages (from-to)1447-1456
Number of pages10
JournalNeuroscience
Volume165
Issue number4
DOIs
StatePublished - Feb 17 2010

Fingerprint

Retinal Rod Photoreceptor Cells
Ryanodine
Calcium
Retina
Sarcoplasmic Reticulum Calcium-Transporting ATPases
Darkness
Amphibians
Dendrites
Confocal Microscopy
Synaptic Transmission
Electric Stimulation
Electrodes
Coloring Agents
Electrons

Keywords

  • Ca-induced Ca release
  • outer retina
  • ryanodine
  • synaptic transmission

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors. / Babai, N.; Morgans, C. W.; Thoreson, Wallace B.

In: Neuroscience, Vol. 165, No. 4, 17.02.2010, p. 1447-1456.

Research output: Contribution to journalArticle

@article{27a6f308f4bc420980e09fa06838ef23,
title = "Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors",
abstract = "We tested whether calcium-induced calcium release (CICR) contributes to synaptic release from rods in mammalian retina. Electron micrographs and immunofluorescent double labeling for the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and synaptic ribbon protein, ribeye, showed a close association between ER and synaptic ribbons in mouse rod terminals. Stimulating CICR with 10 μM ryanodine evoked Ca2+ increases in rod terminals from mouse retinal slices visualized using confocal microscopy with the Ca2+-sensitive dye, Fluo-4. Ryanodine also stimulated membrane depolarization of individual mouse rods. Inhibiting CICR with a high concentration of ryanodine (100 μM) reduced the electroretinogram (ERG) b-wave but not a-wave consistent with inhibition of synaptic transmission from rods. Ryanodine (100 μM) also inhibited light-evoked voltage responses of individual rod bipolar cells (RBCs) and presumptive horizontal cells recorded with perforated patch recording techniques. A presynaptic site of action for ryanodine's effects is further indicated by the finding that ryanodine (100 μM) did not alter currents evoked in voltage-clamped RBCs by puffing the mGluR6 antagonist, (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), onto bipolar cell dendrites in the presence of the mGluR6 agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4). Ryanodine (100 μM) also inhibited glutamatergic outward currents in RBCs evoked by electrical stimulation of rods using electrodes placed in the outer segment layer. Together, these results indicate that, like amphibian retina, CICR contributes to synaptic release from mammalian (mouse) rods. By boosting synaptic release in darkness, CICR may improve the detection of small luminance changes by post-synaptic neurons.",
keywords = "Ca-induced Ca release, outer retina, ryanodine, synaptic transmission",
author = "N. Babai and Morgans, {C. W.} and Thoreson, {Wallace B}",
year = "2010",
month = "2",
day = "17",
doi = "10.1016/j.neuroscience.2009.11.032",
language = "English (US)",
volume = "165",
pages = "1447--1456",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "4",

}

TY - JOUR

T1 - Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors

AU - Babai, N.

AU - Morgans, C. W.

AU - Thoreson, Wallace B

PY - 2010/2/17

Y1 - 2010/2/17

N2 - We tested whether calcium-induced calcium release (CICR) contributes to synaptic release from rods in mammalian retina. Electron micrographs and immunofluorescent double labeling for the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and synaptic ribbon protein, ribeye, showed a close association between ER and synaptic ribbons in mouse rod terminals. Stimulating CICR with 10 μM ryanodine evoked Ca2+ increases in rod terminals from mouse retinal slices visualized using confocal microscopy with the Ca2+-sensitive dye, Fluo-4. Ryanodine also stimulated membrane depolarization of individual mouse rods. Inhibiting CICR with a high concentration of ryanodine (100 μM) reduced the electroretinogram (ERG) b-wave but not a-wave consistent with inhibition of synaptic transmission from rods. Ryanodine (100 μM) also inhibited light-evoked voltage responses of individual rod bipolar cells (RBCs) and presumptive horizontal cells recorded with perforated patch recording techniques. A presynaptic site of action for ryanodine's effects is further indicated by the finding that ryanodine (100 μM) did not alter currents evoked in voltage-clamped RBCs by puffing the mGluR6 antagonist, (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), onto bipolar cell dendrites in the presence of the mGluR6 agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4). Ryanodine (100 μM) also inhibited glutamatergic outward currents in RBCs evoked by electrical stimulation of rods using electrodes placed in the outer segment layer. Together, these results indicate that, like amphibian retina, CICR contributes to synaptic release from mammalian (mouse) rods. By boosting synaptic release in darkness, CICR may improve the detection of small luminance changes by post-synaptic neurons.

AB - We tested whether calcium-induced calcium release (CICR) contributes to synaptic release from rods in mammalian retina. Electron micrographs and immunofluorescent double labeling for the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and synaptic ribbon protein, ribeye, showed a close association between ER and synaptic ribbons in mouse rod terminals. Stimulating CICR with 10 μM ryanodine evoked Ca2+ increases in rod terminals from mouse retinal slices visualized using confocal microscopy with the Ca2+-sensitive dye, Fluo-4. Ryanodine also stimulated membrane depolarization of individual mouse rods. Inhibiting CICR with a high concentration of ryanodine (100 μM) reduced the electroretinogram (ERG) b-wave but not a-wave consistent with inhibition of synaptic transmission from rods. Ryanodine (100 μM) also inhibited light-evoked voltage responses of individual rod bipolar cells (RBCs) and presumptive horizontal cells recorded with perforated patch recording techniques. A presynaptic site of action for ryanodine's effects is further indicated by the finding that ryanodine (100 μM) did not alter currents evoked in voltage-clamped RBCs by puffing the mGluR6 antagonist, (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG), onto bipolar cell dendrites in the presence of the mGluR6 agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4). Ryanodine (100 μM) also inhibited glutamatergic outward currents in RBCs evoked by electrical stimulation of rods using electrodes placed in the outer segment layer. Together, these results indicate that, like amphibian retina, CICR contributes to synaptic release from mammalian (mouse) rods. By boosting synaptic release in darkness, CICR may improve the detection of small luminance changes by post-synaptic neurons.

KW - Ca-induced Ca release

KW - outer retina

KW - ryanodine

KW - synaptic transmission

UR - http://www.scopus.com/inward/record.url?scp=73749084118&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=73749084118&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2009.11.032

DO - 10.1016/j.neuroscience.2009.11.032

M3 - Article

C2 - 19932743

AN - SCOPUS:73749084118

VL - 165

SP - 1447

EP - 1456

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 4

ER -