Bortezomib, a proteasome inhibitor, attenuates angiotensin II-induced hypertension and aortic remodeling in rats.

Shuai Li, Xuejun Wang, Yifan Li, Curtis K. Kost, Douglas S. Martin

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Hypertension is a highly prevalent disorder and a major risk factor for cardiovascular diseases. Hypertensive vascular remodeling is the pathological mal-adaption of blood vessels to the hypertensive condition that contributes to further development of high blood pressure and end-organ damage. Hypertensive remodeling involves, at least in part, changes in protein turnover. The ubiquitin proteasome system (UPS) is a major protein quality and quantity control system. This study tested the hypothesis that the proteasome inhibitor, bortezomib, would attenuate AngII-induced hypertension and its sequelae such as aortic remodeling in rats. Male Sprague Dawley rats were subjected to AngII infusion for two weeks in the absence or presence of bortezomib. Mean arterial pressure was measured in conscious rats. Aortic tissue was collected for estimation of wall area, collagen deposition and expression of tissue inhibitors of matrix metalloproteases (TIMP), Ki67 (a marker of proliferation), reactive oxygen species (ROS) and VCAM-1 (a marker of inflammation). AngII infusion increased arterial pressure significantly (160±4 mmHg vs. vehicle treatment 133±2 mmHg). This hypertensive response was attenuated by bortezomib (138±5 mmHg). AngII hypertension was associated with significant increases in aortic wall to lumen ratio (∼29%), collagen deposition (∼14%) and expression of TIMP1 and TIMP2. AngII also increased MMP2 activity, proteasomal chymotrypsin-like activity, Ki67 staining, ROS generation and VCAM-1 immunoreactivity. Co-treatment of AngII-infused rats with bortezomib attenuated these AngII-induced responses. Collectively, these data support the idea that proteasome activity contributes to AngII-induced hypertension and hypertensive aortic vascular remodeling at least in part by modulating TIMP1/2 and MMP2 function. Preliminary observations are consistent with a role for ROS, inflammatory and proliferative mechanisms in this effect. Further understanding of the mechanisms by which the proteasome is involved in hypertension and vascular structural remodeling may reveal novel targets for pharmacological treatment of hypertension, hypertensive remodeling or both.

Original languageEnglish (US)
JournalPloS one
Volume8
Issue number10
DOIs
StatePublished - 2013

Fingerprint

Proteasome Inhibitors
angiotensin II
proteasome endopeptidase complex
Angiotensin II
hypertension
Rats
Proteasome Endopeptidase Complex
Hypertension
Reactive Oxygen Species
Vascular Cell Adhesion Molecule-1
blood vessels
rats
Collagen
reactive oxygen species
Tissue
Blood pressure
Blood vessels
Chymotrypsin
Metalloproteases
Ubiquitin

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this

Bortezomib, a proteasome inhibitor, attenuates angiotensin II-induced hypertension and aortic remodeling in rats. / Li, Shuai; Wang, Xuejun; Li, Yifan; Kost, Curtis K.; Martin, Douglas S.

In: PloS one, Vol. 8, No. 10, 2013.

Research output: Contribution to journalArticle

Li, Shuai ; Wang, Xuejun ; Li, Yifan ; Kost, Curtis K. ; Martin, Douglas S. / Bortezomib, a proteasome inhibitor, attenuates angiotensin II-induced hypertension and aortic remodeling in rats. In: PloS one. 2013 ; Vol. 8, No. 10.
@article{78727ceea6ff4222bd79be5b50d9b78e,
title = "Bortezomib, a proteasome inhibitor, attenuates angiotensin II-induced hypertension and aortic remodeling in rats.",
abstract = "Hypertension is a highly prevalent disorder and a major risk factor for cardiovascular diseases. Hypertensive vascular remodeling is the pathological mal-adaption of blood vessels to the hypertensive condition that contributes to further development of high blood pressure and end-organ damage. Hypertensive remodeling involves, at least in part, changes in protein turnover. The ubiquitin proteasome system (UPS) is a major protein quality and quantity control system. This study tested the hypothesis that the proteasome inhibitor, bortezomib, would attenuate AngII-induced hypertension and its sequelae such as aortic remodeling in rats. Male Sprague Dawley rats were subjected to AngII infusion for two weeks in the absence or presence of bortezomib. Mean arterial pressure was measured in conscious rats. Aortic tissue was collected for estimation of wall area, collagen deposition and expression of tissue inhibitors of matrix metalloproteases (TIMP), Ki67 (a marker of proliferation), reactive oxygen species (ROS) and VCAM-1 (a marker of inflammation). AngII infusion increased arterial pressure significantly (160±4 mmHg vs. vehicle treatment 133±2 mmHg). This hypertensive response was attenuated by bortezomib (138±5 mmHg). AngII hypertension was associated with significant increases in aortic wall to lumen ratio (∼29{\%}), collagen deposition (∼14{\%}) and expression of TIMP1 and TIMP2. AngII also increased MMP2 activity, proteasomal chymotrypsin-like activity, Ki67 staining, ROS generation and VCAM-1 immunoreactivity. Co-treatment of AngII-infused rats with bortezomib attenuated these AngII-induced responses. Collectively, these data support the idea that proteasome activity contributes to AngII-induced hypertension and hypertensive aortic vascular remodeling at least in part by modulating TIMP1/2 and MMP2 function. Preliminary observations are consistent with a role for ROS, inflammatory and proliferative mechanisms in this effect. Further understanding of the mechanisms by which the proteasome is involved in hypertension and vascular structural remodeling may reveal novel targets for pharmacological treatment of hypertension, hypertensive remodeling or both.",
author = "Shuai Li and Xuejun Wang and Yifan Li and Kost, {Curtis K.} and Martin, {Douglas S.}",
year = "2013",
doi = "10.1371/journal.pone.0078564",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Bortezomib, a proteasome inhibitor, attenuates angiotensin II-induced hypertension and aortic remodeling in rats.

AU - Li, Shuai

AU - Wang, Xuejun

AU - Li, Yifan

AU - Kost, Curtis K.

AU - Martin, Douglas S.

PY - 2013

Y1 - 2013

N2 - Hypertension is a highly prevalent disorder and a major risk factor for cardiovascular diseases. Hypertensive vascular remodeling is the pathological mal-adaption of blood vessels to the hypertensive condition that contributes to further development of high blood pressure and end-organ damage. Hypertensive remodeling involves, at least in part, changes in protein turnover. The ubiquitin proteasome system (UPS) is a major protein quality and quantity control system. This study tested the hypothesis that the proteasome inhibitor, bortezomib, would attenuate AngII-induced hypertension and its sequelae such as aortic remodeling in rats. Male Sprague Dawley rats were subjected to AngII infusion for two weeks in the absence or presence of bortezomib. Mean arterial pressure was measured in conscious rats. Aortic tissue was collected for estimation of wall area, collagen deposition and expression of tissue inhibitors of matrix metalloproteases (TIMP), Ki67 (a marker of proliferation), reactive oxygen species (ROS) and VCAM-1 (a marker of inflammation). AngII infusion increased arterial pressure significantly (160±4 mmHg vs. vehicle treatment 133±2 mmHg). This hypertensive response was attenuated by bortezomib (138±5 mmHg). AngII hypertension was associated with significant increases in aortic wall to lumen ratio (∼29%), collagen deposition (∼14%) and expression of TIMP1 and TIMP2. AngII also increased MMP2 activity, proteasomal chymotrypsin-like activity, Ki67 staining, ROS generation and VCAM-1 immunoreactivity. Co-treatment of AngII-infused rats with bortezomib attenuated these AngII-induced responses. Collectively, these data support the idea that proteasome activity contributes to AngII-induced hypertension and hypertensive aortic vascular remodeling at least in part by modulating TIMP1/2 and MMP2 function. Preliminary observations are consistent with a role for ROS, inflammatory and proliferative mechanisms in this effect. Further understanding of the mechanisms by which the proteasome is involved in hypertension and vascular structural remodeling may reveal novel targets for pharmacological treatment of hypertension, hypertensive remodeling or both.

AB - Hypertension is a highly prevalent disorder and a major risk factor for cardiovascular diseases. Hypertensive vascular remodeling is the pathological mal-adaption of blood vessels to the hypertensive condition that contributes to further development of high blood pressure and end-organ damage. Hypertensive remodeling involves, at least in part, changes in protein turnover. The ubiquitin proteasome system (UPS) is a major protein quality and quantity control system. This study tested the hypothesis that the proteasome inhibitor, bortezomib, would attenuate AngII-induced hypertension and its sequelae such as aortic remodeling in rats. Male Sprague Dawley rats were subjected to AngII infusion for two weeks in the absence or presence of bortezomib. Mean arterial pressure was measured in conscious rats. Aortic tissue was collected for estimation of wall area, collagen deposition and expression of tissue inhibitors of matrix metalloproteases (TIMP), Ki67 (a marker of proliferation), reactive oxygen species (ROS) and VCAM-1 (a marker of inflammation). AngII infusion increased arterial pressure significantly (160±4 mmHg vs. vehicle treatment 133±2 mmHg). This hypertensive response was attenuated by bortezomib (138±5 mmHg). AngII hypertension was associated with significant increases in aortic wall to lumen ratio (∼29%), collagen deposition (∼14%) and expression of TIMP1 and TIMP2. AngII also increased MMP2 activity, proteasomal chymotrypsin-like activity, Ki67 staining, ROS generation and VCAM-1 immunoreactivity. Co-treatment of AngII-infused rats with bortezomib attenuated these AngII-induced responses. Collectively, these data support the idea that proteasome activity contributes to AngII-induced hypertension and hypertensive aortic vascular remodeling at least in part by modulating TIMP1/2 and MMP2 function. Preliminary observations are consistent with a role for ROS, inflammatory and proliferative mechanisms in this effect. Further understanding of the mechanisms by which the proteasome is involved in hypertension and vascular structural remodeling may reveal novel targets for pharmacological treatment of hypertension, hypertensive remodeling or both.

UR - http://www.scopus.com/inward/record.url?scp=84899976555&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84899976555&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0078564

DO - 10.1371/journal.pone.0078564

M3 - Article

C2 - 24205262

AN - SCOPUS:84899976555

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

ER -