Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary

Prabuddha Chakraborty, Shyamal K Roy

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3.

Original languageEnglish (US)
Article number12664
JournalScientific reports
Volume5
DOIs
StatePublished - Jul 29 2015

Fingerprint

Bone Morphogenetic Protein 2
Oocytes
Ovary
Germ Cells
Granulosa Cells
Cricetinae
Cell Differentiation
Apoptosis

ASJC Scopus subject areas

  • General

Cite this

Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary. / Chakraborty, Prabuddha; Roy, Shyamal K.

In: Scientific reports, Vol. 5, 12664, 29.07.2015.

Research output: Contribution to journalArticle

@article{f25ff70ac3d440d3a0b29d01a8aaca31,
title = "Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary",
abstract = "Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3.",
author = "Prabuddha Chakraborty and Roy, {Shyamal K}",
year = "2015",
month = "7",
day = "29",
doi = "10.1038/srep12664",
language = "English (US)",
volume = "5",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary

AU - Chakraborty, Prabuddha

AU - Roy, Shyamal K

PY - 2015/7/29

Y1 - 2015/7/29

N2 - Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3.

AB - Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3.

UR - http://www.scopus.com/inward/record.url?scp=84938274217&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938274217&partnerID=8YFLogxK

U2 - 10.1038/srep12664

DO - 10.1038/srep12664

M3 - Article

C2 - 26219655

AN - SCOPUS:84938274217

VL - 5

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 12664

ER -