Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation

Antonios P. Antoniadis, Peter Mortier, Ghassan Kassab, Gabriele Dubini, Nicolas Foin, Yoshinobu Murasato, Andreas A. Giannopoulos, Shengxian Tu, Kiyotaka Iwasaki, Yutaka Hikichi, Francesco Migliavacca, Claudio Chiastra, Jolanda J. Wentzel, Frank Gijsen, Johan H.C. Reiber, Peter Barlis, Patrick W. Serruys, Deepak L. Bhatt, Goran Stankovic, Elazer R. EdelmanGeorge D. Giannoglou, Yves Louvard, Yiannis S. Chatzizisis

Research output: Contribution to journalReview article

35 Citations (Scopus)

Abstract

Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.

Original languageEnglish (US)
Article number2103
Pages (from-to)1281-1296
Number of pages16
JournalJACC: Cardiovascular Interventions
Volume8
Issue number10
DOIs
StatePublished - Aug 24 2015

Fingerprint

Stents
Coronary Vessels
Percutaneous Coronary Intervention
Thrombosis
Therapeutics

Keywords

  • bifurcation
  • biomechanical stress
  • coronary artery disease
  • endothelial shear stress
  • stent(s)

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Cite this

Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting : Expert Review Document on Techniques and Clinical Implementation. / Antoniadis, Antonios P.; Mortier, Peter; Kassab, Ghassan; Dubini, Gabriele; Foin, Nicolas; Murasato, Yoshinobu; Giannopoulos, Andreas A.; Tu, Shengxian; Iwasaki, Kiyotaka; Hikichi, Yutaka; Migliavacca, Francesco; Chiastra, Claudio; Wentzel, Jolanda J.; Gijsen, Frank; Reiber, Johan H.C.; Barlis, Peter; Serruys, Patrick W.; Bhatt, Deepak L.; Stankovic, Goran; Edelman, Elazer R.; Giannoglou, George D.; Louvard, Yves; Chatzizisis, Yiannis S.

In: JACC: Cardiovascular Interventions, Vol. 8, No. 10, 2103, 24.08.2015, p. 1281-1296.

Research output: Contribution to journalReview article

Antoniadis, AP, Mortier, P, Kassab, G, Dubini, G, Foin, N, Murasato, Y, Giannopoulos, AA, Tu, S, Iwasaki, K, Hikichi, Y, Migliavacca, F, Chiastra, C, Wentzel, JJ, Gijsen, F, Reiber, JHC, Barlis, P, Serruys, PW, Bhatt, DL, Stankovic, G, Edelman, ER, Giannoglou, GD, Louvard, Y & Chatzizisis, YS 2015, 'Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation', JACC: Cardiovascular Interventions, vol. 8, no. 10, 2103, pp. 1281-1296. https://doi.org/10.1016/j.jcin.2015.06.015
Antoniadis, Antonios P. ; Mortier, Peter ; Kassab, Ghassan ; Dubini, Gabriele ; Foin, Nicolas ; Murasato, Yoshinobu ; Giannopoulos, Andreas A. ; Tu, Shengxian ; Iwasaki, Kiyotaka ; Hikichi, Yutaka ; Migliavacca, Francesco ; Chiastra, Claudio ; Wentzel, Jolanda J. ; Gijsen, Frank ; Reiber, Johan H.C. ; Barlis, Peter ; Serruys, Patrick W. ; Bhatt, Deepak L. ; Stankovic, Goran ; Edelman, Elazer R. ; Giannoglou, George D. ; Louvard, Yves ; Chatzizisis, Yiannis S. / Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting : Expert Review Document on Techniques and Clinical Implementation. In: JACC: Cardiovascular Interventions. 2015 ; Vol. 8, No. 10. pp. 1281-1296.
@article{b1fd2670041941e6880997d9f8d0f705,
title = "Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation",
abstract = "Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.",
keywords = "bifurcation, biomechanical stress, coronary artery disease, endothelial shear stress, stent(s)",
author = "Antoniadis, {Antonios P.} and Peter Mortier and Ghassan Kassab and Gabriele Dubini and Nicolas Foin and Yoshinobu Murasato and Giannopoulos, {Andreas A.} and Shengxian Tu and Kiyotaka Iwasaki and Yutaka Hikichi and Francesco Migliavacca and Claudio Chiastra and Wentzel, {Jolanda J.} and Frank Gijsen and Reiber, {Johan H.C.} and Peter Barlis and Serruys, {Patrick W.} and Bhatt, {Deepak L.} and Goran Stankovic and Edelman, {Elazer R.} and Giannoglou, {George D.} and Yves Louvard and Chatzizisis, {Yiannis S.}",
year = "2015",
month = "8",
day = "24",
doi = "10.1016/j.jcin.2015.06.015",
language = "English (US)",
volume = "8",
pages = "1281--1296",
journal = "JACC: Cardiovascular Interventions",
issn = "1936-8798",
publisher = "Elsevier Inc.",
number = "10",

}

TY - JOUR

T1 - Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting

T2 - Expert Review Document on Techniques and Clinical Implementation

AU - Antoniadis, Antonios P.

AU - Mortier, Peter

AU - Kassab, Ghassan

AU - Dubini, Gabriele

AU - Foin, Nicolas

AU - Murasato, Yoshinobu

AU - Giannopoulos, Andreas A.

AU - Tu, Shengxian

AU - Iwasaki, Kiyotaka

AU - Hikichi, Yutaka

AU - Migliavacca, Francesco

AU - Chiastra, Claudio

AU - Wentzel, Jolanda J.

AU - Gijsen, Frank

AU - Reiber, Johan H.C.

AU - Barlis, Peter

AU - Serruys, Patrick W.

AU - Bhatt, Deepak L.

AU - Stankovic, Goran

AU - Edelman, Elazer R.

AU - Giannoglou, George D.

AU - Louvard, Yves

AU - Chatzizisis, Yiannis S.

PY - 2015/8/24

Y1 - 2015/8/24

N2 - Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.

AB - Treatment of coronary bifurcation lesions remains an ongoing challenge for interventional cardiologists. Stenting of coronary bifurcations carries higher risk for in-stent restenosis, stent thrombosis, and recurrent clinical events. This review summarizes the current evidence regarding application and use of biomechanical modeling in the study of stent properties, local flow dynamics, and outcomes after percutaneous coronary interventions in bifurcation lesions. Biomechanical modeling of bifurcation stenting involves computational simulations and in vitro bench testing using subject-specific arterial geometries obtained from in vivo imaging. Biomechanical modeling has the potential to optimize stenting strategies and stent design, thereby reducing adverse outcomes. Large-scale clinical studies are needed to establish the translation of pre-clinical findings to the clinical arena.

KW - bifurcation

KW - biomechanical stress

KW - coronary artery disease

KW - endothelial shear stress

KW - stent(s)

UR - http://www.scopus.com/inward/record.url?scp=84940388438&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84940388438&partnerID=8YFLogxK

U2 - 10.1016/j.jcin.2015.06.015

DO - 10.1016/j.jcin.2015.06.015

M3 - Review article

C2 - 26315731

AN - SCOPUS:84940388438

VL - 8

SP - 1281

EP - 1296

JO - JACC: Cardiovascular Interventions

JF - JACC: Cardiovascular Interventions

SN - 1936-8798

IS - 10

M1 - 2103

ER -