Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions

Daniel B. Putterman, Douglas H Keefe, Lisa L. Hunter, Angela C. Garinis, Denis F. Fitzpatrick, Garnett P. McMillan, M. Patrick Feeney

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Objectives: An important clinical application of transient-evoked otoacoustic emissions (TEOAEs) is to evaluate cochlear outer hair cell function for the purpose of detecting sensorineural hearing loss (SNHL). Double-evoked TEOAEs were measured using a chirp stimulus, in which the stimuli had an extended frequency range compared to clinical tests. The present study compared TEOAEs recorded using an unweighted stimulus presented at either ambient pressure or tympanometric peak pressure (TPP) in the ear canal and TEOAEs recorded using a power-weighted stimulus at ambient pressure. The unweighted stimulus had approximately constant incident pressure magnitude across frequency, and the power-weighted stimulus had approximately constant absorbed sound power across frequency. The objective of this study was to compare TEOAEs from 0.79 to 8 kHz using these three stimulus conditions in adults to assess test performance in classifying ears as having either normal hearing or SNHL. Design: Measurements were completed on 87 adult participants. Eligible participants had either normal hearing (N = 40; M F = 16 24; mean age = 30 years) or SNHL (N = 47; M F = 20|27; mean age = 58 years), and normal middle ear function as defined by standard clinical criteria for 226-Hz tympanometry. Clinical audiometry, immittance, and an experimental wideband test battery, which included reflectance and TEOAE tests presented for 1-min durations, were completed for each ear on all participants. All tests were then repeated 1 to 2 months later. TEOAEs were measured by presenting the stimulus in the three stimulus conditions. TEOAE data were analyzed in each hearing group in terms of the half-octave-averaged signal to noise ratio (SNR) and the coherence synchrony measure (CSM) at frequencies between 1 and 8 kHz. The test-retest reliability of these measures was calculated. The area under the receiver operating characteristic curve (AUC) was measured at audiometric frequencies between 1 and 8 kHz to determine TEOAE test performance in distinguishing SNHL from normal hearing. Results: Mean TEOAE SNR was ≥8.7 dB for normal-hearing ears and ≤6 dB for SNHL ears for all three stimulus conditions across all frequencies. Mean test-retest reliability of TEOAE SNR was ≤4.3 dB for both hearing groups across all frequencies, although it was generally less (≤3.5 dB) for lower frequencies (1 to 4 kHz). AUCs were between 0.85 and 0.94 for all three TEOAE conditions at all frequencies, except for the ambient TEOAE condition at 2 kHz (0.82) and for all TEOAE conditions at 5.7 kHz with AUCs between 0.78 and 0.81. Power-weighted TEOAE AUCs were significantly higher (p < 0.05) than ambient TEOAE AUCs at 2 and 2.8 kHz, as was the TPP TEOAE AUC at 2.8 kHz when using CSM as the classifier variable. Conclusions: TEOAEs evaluated in an ambient condition, at TPP and in a power-weighted stimulus condition, had good test performance in identifying ears with SNHL based on SNR and CSM in the frequency range from 1 to 8 kHz and showed good test-retest reliability. Power-weighted TEOAEs showed the best test performance at 2 and 2.8 kHz. These findings are encouraging as a potential objective clinical tool to identify patients with cochlear hearing loss.

Original languageEnglish (US)
Pages (from-to)507-520
Number of pages14
JournalEar and hearing
Volume38
Issue number4
DOIs
StatePublished - Jan 1 2017

Fingerprint

Sensorineural Hearing Loss
Hearing
Area Under Curve
Ear
Signal-To-Noise Ratio
Pressure
Reproducibility of Results
Outer Auditory Hair Cells
Acoustic Impedance Tests
Audiometry
Ear Canal
Middle Ear
ROC Curve
Power (Psychology)

Keywords

  • Sensorineural hearing loss
  • Transient-evoked otoacoustic emissions
  • Wideband acoustic immittance

ASJC Scopus subject areas

  • Otorhinolaryngology
  • Speech and Hearing

Cite this

Putterman, D. B., Keefe, D. H., Hunter, L. L., Garinis, A. C., Fitzpatrick, D. F., McMillan, G. P., & Feeney, M. P. (2017). Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions. Ear and hearing, 38(4), 507-520. https://doi.org/10.1097/AUD.0000000000000425

Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions. / Putterman, Daniel B.; Keefe, Douglas H; Hunter, Lisa L.; Garinis, Angela C.; Fitzpatrick, Denis F.; McMillan, Garnett P.; Feeney, M. Patrick.

In: Ear and hearing, Vol. 38, No. 4, 01.01.2017, p. 507-520.

Research output: Contribution to journalArticle

Putterman, DB, Keefe, DH, Hunter, LL, Garinis, AC, Fitzpatrick, DF, McMillan, GP & Feeney, MP 2017, 'Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions', Ear and hearing, vol. 38, no. 4, pp. 507-520. https://doi.org/10.1097/AUD.0000000000000425
Putterman, Daniel B. ; Keefe, Douglas H ; Hunter, Lisa L. ; Garinis, Angela C. ; Fitzpatrick, Denis F. ; McMillan, Garnett P. ; Feeney, M. Patrick. / Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions. In: Ear and hearing. 2017 ; Vol. 38, No. 4. pp. 507-520.
@article{c172a1353d6742688a886d9ede72b54b,
title = "Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions",
abstract = "Objectives: An important clinical application of transient-evoked otoacoustic emissions (TEOAEs) is to evaluate cochlear outer hair cell function for the purpose of detecting sensorineural hearing loss (SNHL). Double-evoked TEOAEs were measured using a chirp stimulus, in which the stimuli had an extended frequency range compared to clinical tests. The present study compared TEOAEs recorded using an unweighted stimulus presented at either ambient pressure or tympanometric peak pressure (TPP) in the ear canal and TEOAEs recorded using a power-weighted stimulus at ambient pressure. The unweighted stimulus had approximately constant incident pressure magnitude across frequency, and the power-weighted stimulus had approximately constant absorbed sound power across frequency. The objective of this study was to compare TEOAEs from 0.79 to 8 kHz using these three stimulus conditions in adults to assess test performance in classifying ears as having either normal hearing or SNHL. Design: Measurements were completed on 87 adult participants. Eligible participants had either normal hearing (N = 40; M F = 16 24; mean age = 30 years) or SNHL (N = 47; M F = 20|27; mean age = 58 years), and normal middle ear function as defined by standard clinical criteria for 226-Hz tympanometry. Clinical audiometry, immittance, and an experimental wideband test battery, which included reflectance and TEOAE tests presented for 1-min durations, were completed for each ear on all participants. All tests were then repeated 1 to 2 months later. TEOAEs were measured by presenting the stimulus in the three stimulus conditions. TEOAE data were analyzed in each hearing group in terms of the half-octave-averaged signal to noise ratio (SNR) and the coherence synchrony measure (CSM) at frequencies between 1 and 8 kHz. The test-retest reliability of these measures was calculated. The area under the receiver operating characteristic curve (AUC) was measured at audiometric frequencies between 1 and 8 kHz to determine TEOAE test performance in distinguishing SNHL from normal hearing. Results: Mean TEOAE SNR was ≥8.7 dB for normal-hearing ears and ≤6 dB for SNHL ears for all three stimulus conditions across all frequencies. Mean test-retest reliability of TEOAE SNR was ≤4.3 dB for both hearing groups across all frequencies, although it was generally less (≤3.5 dB) for lower frequencies (1 to 4 kHz). AUCs were between 0.85 and 0.94 for all three TEOAE conditions at all frequencies, except for the ambient TEOAE condition at 2 kHz (0.82) and for all TEOAE conditions at 5.7 kHz with AUCs between 0.78 and 0.81. Power-weighted TEOAE AUCs were significantly higher (p < 0.05) than ambient TEOAE AUCs at 2 and 2.8 kHz, as was the TPP TEOAE AUC at 2.8 kHz when using CSM as the classifier variable. Conclusions: TEOAEs evaluated in an ambient condition, at TPP and in a power-weighted stimulus condition, had good test performance in identifying ears with SNHL based on SNR and CSM in the frequency range from 1 to 8 kHz and showed good test-retest reliability. Power-weighted TEOAEs showed the best test performance at 2 and 2.8 kHz. These findings are encouraging as a potential objective clinical tool to identify patients with cochlear hearing loss.",
keywords = "Sensorineural hearing loss, Transient-evoked otoacoustic emissions, Wideband acoustic immittance",
author = "Putterman, {Daniel B.} and Keefe, {Douglas H} and Hunter, {Lisa L.} and Garinis, {Angela C.} and Fitzpatrick, {Denis F.} and McMillan, {Garnett P.} and Feeney, {M. Patrick}",
year = "2017",
month = "1",
day = "1",
doi = "10.1097/AUD.0000000000000425",
language = "English (US)",
volume = "38",
pages = "507--520",
journal = "Ear and Hearing",
issn = "0196-0202",
publisher = "Lippincott Williams and Wilkins",
number = "4",

}

TY - JOUR

T1 - Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions

AU - Putterman, Daniel B.

AU - Keefe, Douglas H

AU - Hunter, Lisa L.

AU - Garinis, Angela C.

AU - Fitzpatrick, Denis F.

AU - McMillan, Garnett P.

AU - Feeney, M. Patrick

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Objectives: An important clinical application of transient-evoked otoacoustic emissions (TEOAEs) is to evaluate cochlear outer hair cell function for the purpose of detecting sensorineural hearing loss (SNHL). Double-evoked TEOAEs were measured using a chirp stimulus, in which the stimuli had an extended frequency range compared to clinical tests. The present study compared TEOAEs recorded using an unweighted stimulus presented at either ambient pressure or tympanometric peak pressure (TPP) in the ear canal and TEOAEs recorded using a power-weighted stimulus at ambient pressure. The unweighted stimulus had approximately constant incident pressure magnitude across frequency, and the power-weighted stimulus had approximately constant absorbed sound power across frequency. The objective of this study was to compare TEOAEs from 0.79 to 8 kHz using these three stimulus conditions in adults to assess test performance in classifying ears as having either normal hearing or SNHL. Design: Measurements were completed on 87 adult participants. Eligible participants had either normal hearing (N = 40; M F = 16 24; mean age = 30 years) or SNHL (N = 47; M F = 20|27; mean age = 58 years), and normal middle ear function as defined by standard clinical criteria for 226-Hz tympanometry. Clinical audiometry, immittance, and an experimental wideband test battery, which included reflectance and TEOAE tests presented for 1-min durations, were completed for each ear on all participants. All tests were then repeated 1 to 2 months later. TEOAEs were measured by presenting the stimulus in the three stimulus conditions. TEOAE data were analyzed in each hearing group in terms of the half-octave-averaged signal to noise ratio (SNR) and the coherence synchrony measure (CSM) at frequencies between 1 and 8 kHz. The test-retest reliability of these measures was calculated. The area under the receiver operating characteristic curve (AUC) was measured at audiometric frequencies between 1 and 8 kHz to determine TEOAE test performance in distinguishing SNHL from normal hearing. Results: Mean TEOAE SNR was ≥8.7 dB for normal-hearing ears and ≤6 dB for SNHL ears for all three stimulus conditions across all frequencies. Mean test-retest reliability of TEOAE SNR was ≤4.3 dB for both hearing groups across all frequencies, although it was generally less (≤3.5 dB) for lower frequencies (1 to 4 kHz). AUCs were between 0.85 and 0.94 for all three TEOAE conditions at all frequencies, except for the ambient TEOAE condition at 2 kHz (0.82) and for all TEOAE conditions at 5.7 kHz with AUCs between 0.78 and 0.81. Power-weighted TEOAE AUCs were significantly higher (p < 0.05) than ambient TEOAE AUCs at 2 and 2.8 kHz, as was the TPP TEOAE AUC at 2.8 kHz when using CSM as the classifier variable. Conclusions: TEOAEs evaluated in an ambient condition, at TPP and in a power-weighted stimulus condition, had good test performance in identifying ears with SNHL based on SNR and CSM in the frequency range from 1 to 8 kHz and showed good test-retest reliability. Power-weighted TEOAEs showed the best test performance at 2 and 2.8 kHz. These findings are encouraging as a potential objective clinical tool to identify patients with cochlear hearing loss.

AB - Objectives: An important clinical application of transient-evoked otoacoustic emissions (TEOAEs) is to evaluate cochlear outer hair cell function for the purpose of detecting sensorineural hearing loss (SNHL). Double-evoked TEOAEs were measured using a chirp stimulus, in which the stimuli had an extended frequency range compared to clinical tests. The present study compared TEOAEs recorded using an unweighted stimulus presented at either ambient pressure or tympanometric peak pressure (TPP) in the ear canal and TEOAEs recorded using a power-weighted stimulus at ambient pressure. The unweighted stimulus had approximately constant incident pressure magnitude across frequency, and the power-weighted stimulus had approximately constant absorbed sound power across frequency. The objective of this study was to compare TEOAEs from 0.79 to 8 kHz using these three stimulus conditions in adults to assess test performance in classifying ears as having either normal hearing or SNHL. Design: Measurements were completed on 87 adult participants. Eligible participants had either normal hearing (N = 40; M F = 16 24; mean age = 30 years) or SNHL (N = 47; M F = 20|27; mean age = 58 years), and normal middle ear function as defined by standard clinical criteria for 226-Hz tympanometry. Clinical audiometry, immittance, and an experimental wideband test battery, which included reflectance and TEOAE tests presented for 1-min durations, were completed for each ear on all participants. All tests were then repeated 1 to 2 months later. TEOAEs were measured by presenting the stimulus in the three stimulus conditions. TEOAE data were analyzed in each hearing group in terms of the half-octave-averaged signal to noise ratio (SNR) and the coherence synchrony measure (CSM) at frequencies between 1 and 8 kHz. The test-retest reliability of these measures was calculated. The area under the receiver operating characteristic curve (AUC) was measured at audiometric frequencies between 1 and 8 kHz to determine TEOAE test performance in distinguishing SNHL from normal hearing. Results: Mean TEOAE SNR was ≥8.7 dB for normal-hearing ears and ≤6 dB for SNHL ears for all three stimulus conditions across all frequencies. Mean test-retest reliability of TEOAE SNR was ≤4.3 dB for both hearing groups across all frequencies, although it was generally less (≤3.5 dB) for lower frequencies (1 to 4 kHz). AUCs were between 0.85 and 0.94 for all three TEOAE conditions at all frequencies, except for the ambient TEOAE condition at 2 kHz (0.82) and for all TEOAE conditions at 5.7 kHz with AUCs between 0.78 and 0.81. Power-weighted TEOAE AUCs were significantly higher (p < 0.05) than ambient TEOAE AUCs at 2 and 2.8 kHz, as was the TPP TEOAE AUC at 2.8 kHz when using CSM as the classifier variable. Conclusions: TEOAEs evaluated in an ambient condition, at TPP and in a power-weighted stimulus condition, had good test performance in identifying ears with SNHL based on SNR and CSM in the frequency range from 1 to 8 kHz and showed good test-retest reliability. Power-weighted TEOAEs showed the best test performance at 2 and 2.8 kHz. These findings are encouraging as a potential objective clinical tool to identify patients with cochlear hearing loss.

KW - Sensorineural hearing loss

KW - Transient-evoked otoacoustic emissions

KW - Wideband acoustic immittance

UR - http://www.scopus.com/inward/record.url?scp=85018812023&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018812023&partnerID=8YFLogxK

U2 - 10.1097/AUD.0000000000000425

DO - 10.1097/AUD.0000000000000425

M3 - Article

VL - 38

SP - 507

EP - 520

JO - Ear and Hearing

JF - Ear and Hearing

SN - 0196-0202

IS - 4

ER -