Aromatic side chain-porphyrin interactions in designed hemoproteins

Dahui Liu, David A. Williamson, Michelle L. Kennedy, Todd D. Williams, Martha M. Morton, David R. Benson

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Aromatic amino acid side chains are commonly observed to interact with the heme cofactors of natural hemoproteins. These interactions are of the types previously identified for pairs or groups of aromatic amino acid side chains in proteins: offset π-stacking and T-stacking (an edge-to-face arrangement). To evaluate how such interactions may influence structural stability of hemoproteins, we synthesized peptide-sandwiched mesohemes (PSMs) 2 and 3 in which the alanine-4 (Ala-4) residues in 1 have been replaced by phenylalanine (Phe) and tryptophan (Trp), respectively. The Co(III) analogues of 1, 2, and 3 (1-Co, 2-Co, and 3-Co, respectively) were also prepared. Histidine (His)-to-iron coordination in I had previously been shown to induce helical conformations in the peptides (helix content ~50% at 8°C). Molecular modeling studies suggested that Trp, but not Phe, could engage in edge-to-face interactions with the porphyrin if the peptides are fully helical. Replacing Ala-4 with Trp, but not with Phe, was thus predicted to favor enhanced peptide helix content. Circular dichroism spectra are consistent with significantly increased helix content in 3 relative to 1, but not in 2. Hydrogen-deuterium (H/D) exchange rates determined by electrospray ionization mass spectrometry, however, decrease in the order 1 >> 2 > 3, while pH titrations reveal that the stability of the model protein folds decreases in the order 3 > 2 >> 1. Furthermore, 1H NMR spectra of 2-Co and 3-Co indicate that the aromatic side chains in each compound are oriented within the shielding region of the porphyrin ring. Two-dimensional NOE and chemical shift data show that the helices in 3-Co are more highly organized than in 1-Co and span nearly the entire peptide sequence, while in 2-Co shorter helices of intermediate stability run between Phe-4 and Ala-13. The combined results indicate that aromatic side chain-porphyrin interactions in 2 and 3 stabilize their respective model protein folds, and suggest a similar role for the corresponding interactions in natural hemoproteins. Finally, the chemical shift patterns of the Trp side chains in 3-Co, the different effects of Phe and Trp on peptide architecture, and the pattern of chemical shifts exhibited by the α-NH and α-CH hydrogens in all three Co(III) PSMs demonstrate that the solution structures of these designed hemoproteins are similar to those predicted in molecular modeling studies.

Original languageEnglish (US)
Pages (from-to)11798-11812
Number of pages15
JournalJournal of the American Chemical Society
Volume121
Issue number50
DOIs
StatePublished - Dec 22 1999

Fingerprint

Porphyrins
Peptides
Phenylalanine
Tryptophan
Chemical shift
Aromatic Amino Acids
Molecular modeling
Proteins
Carboxylic acids
Alanine
Amino acids
Hydrogen
Electrospray ionization
Electrospray Ionization Mass Spectrometry
Protein Stability
Deuterium
Dichroism
Circular Dichroism
Heme
Titration

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Liu, D., Williamson, D. A., Kennedy, M. L., Williams, T. D., Morton, M. M., & Benson, D. R. (1999). Aromatic side chain-porphyrin interactions in designed hemoproteins. Journal of the American Chemical Society, 121(50), 11798-11812. https://doi.org/10.1021/ja990606r

Aromatic side chain-porphyrin interactions in designed hemoproteins. / Liu, Dahui; Williamson, David A.; Kennedy, Michelle L.; Williams, Todd D.; Morton, Martha M.; Benson, David R.

In: Journal of the American Chemical Society, Vol. 121, No. 50, 22.12.1999, p. 11798-11812.

Research output: Contribution to journalArticle

Liu, D, Williamson, DA, Kennedy, ML, Williams, TD, Morton, MM & Benson, DR 1999, 'Aromatic side chain-porphyrin interactions in designed hemoproteins', Journal of the American Chemical Society, vol. 121, no. 50, pp. 11798-11812. https://doi.org/10.1021/ja990606r
Liu, Dahui ; Williamson, David A. ; Kennedy, Michelle L. ; Williams, Todd D. ; Morton, Martha M. ; Benson, David R. / Aromatic side chain-porphyrin interactions in designed hemoproteins. In: Journal of the American Chemical Society. 1999 ; Vol. 121, No. 50. pp. 11798-11812.
@article{101107eddfb849caa73b6b89eb7c6b0e,
title = "Aromatic side chain-porphyrin interactions in designed hemoproteins",
abstract = "Aromatic amino acid side chains are commonly observed to interact with the heme cofactors of natural hemoproteins. These interactions are of the types previously identified for pairs or groups of aromatic amino acid side chains in proteins: offset π-stacking and T-stacking (an edge-to-face arrangement). To evaluate how such interactions may influence structural stability of hemoproteins, we synthesized peptide-sandwiched mesohemes (PSMs) 2 and 3 in which the alanine-4 (Ala-4) residues in 1 have been replaced by phenylalanine (Phe) and tryptophan (Trp), respectively. The Co(III) analogues of 1, 2, and 3 (1-Co, 2-Co, and 3-Co, respectively) were also prepared. Histidine (His)-to-iron coordination in I had previously been shown to induce helical conformations in the peptides (helix content ~50{\%} at 8°C). Molecular modeling studies suggested that Trp, but not Phe, could engage in edge-to-face interactions with the porphyrin if the peptides are fully helical. Replacing Ala-4 with Trp, but not with Phe, was thus predicted to favor enhanced peptide helix content. Circular dichroism spectra are consistent with significantly increased helix content in 3 relative to 1, but not in 2. Hydrogen-deuterium (H/D) exchange rates determined by electrospray ionization mass spectrometry, however, decrease in the order 1 >> 2 > 3, while pH titrations reveal that the stability of the model protein folds decreases in the order 3 > 2 >> 1. Furthermore, 1H NMR spectra of 2-Co and 3-Co indicate that the aromatic side chains in each compound are oriented within the shielding region of the porphyrin ring. Two-dimensional NOE and chemical shift data show that the helices in 3-Co are more highly organized than in 1-Co and span nearly the entire peptide sequence, while in 2-Co shorter helices of intermediate stability run between Phe-4 and Ala-13. The combined results indicate that aromatic side chain-porphyrin interactions in 2 and 3 stabilize their respective model protein folds, and suggest a similar role for the corresponding interactions in natural hemoproteins. Finally, the chemical shift patterns of the Trp side chains in 3-Co, the different effects of Phe and Trp on peptide architecture, and the pattern of chemical shifts exhibited by the α-NH and α-CH hydrogens in all three Co(III) PSMs demonstrate that the solution structures of these designed hemoproteins are similar to those predicted in molecular modeling studies.",
author = "Dahui Liu and Williamson, {David A.} and Kennedy, {Michelle L.} and Williams, {Todd D.} and Morton, {Martha M.} and Benson, {David R.}",
year = "1999",
month = "12",
day = "22",
doi = "10.1021/ja990606r",
language = "English (US)",
volume = "121",
pages = "11798--11812",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "50",

}

TY - JOUR

T1 - Aromatic side chain-porphyrin interactions in designed hemoproteins

AU - Liu, Dahui

AU - Williamson, David A.

AU - Kennedy, Michelle L.

AU - Williams, Todd D.

AU - Morton, Martha M.

AU - Benson, David R.

PY - 1999/12/22

Y1 - 1999/12/22

N2 - Aromatic amino acid side chains are commonly observed to interact with the heme cofactors of natural hemoproteins. These interactions are of the types previously identified for pairs or groups of aromatic amino acid side chains in proteins: offset π-stacking and T-stacking (an edge-to-face arrangement). To evaluate how such interactions may influence structural stability of hemoproteins, we synthesized peptide-sandwiched mesohemes (PSMs) 2 and 3 in which the alanine-4 (Ala-4) residues in 1 have been replaced by phenylalanine (Phe) and tryptophan (Trp), respectively. The Co(III) analogues of 1, 2, and 3 (1-Co, 2-Co, and 3-Co, respectively) were also prepared. Histidine (His)-to-iron coordination in I had previously been shown to induce helical conformations in the peptides (helix content ~50% at 8°C). Molecular modeling studies suggested that Trp, but not Phe, could engage in edge-to-face interactions with the porphyrin if the peptides are fully helical. Replacing Ala-4 with Trp, but not with Phe, was thus predicted to favor enhanced peptide helix content. Circular dichroism spectra are consistent with significantly increased helix content in 3 relative to 1, but not in 2. Hydrogen-deuterium (H/D) exchange rates determined by electrospray ionization mass spectrometry, however, decrease in the order 1 >> 2 > 3, while pH titrations reveal that the stability of the model protein folds decreases in the order 3 > 2 >> 1. Furthermore, 1H NMR spectra of 2-Co and 3-Co indicate that the aromatic side chains in each compound are oriented within the shielding region of the porphyrin ring. Two-dimensional NOE and chemical shift data show that the helices in 3-Co are more highly organized than in 1-Co and span nearly the entire peptide sequence, while in 2-Co shorter helices of intermediate stability run between Phe-4 and Ala-13. The combined results indicate that aromatic side chain-porphyrin interactions in 2 and 3 stabilize their respective model protein folds, and suggest a similar role for the corresponding interactions in natural hemoproteins. Finally, the chemical shift patterns of the Trp side chains in 3-Co, the different effects of Phe and Trp on peptide architecture, and the pattern of chemical shifts exhibited by the α-NH and α-CH hydrogens in all three Co(III) PSMs demonstrate that the solution structures of these designed hemoproteins are similar to those predicted in molecular modeling studies.

AB - Aromatic amino acid side chains are commonly observed to interact with the heme cofactors of natural hemoproteins. These interactions are of the types previously identified for pairs or groups of aromatic amino acid side chains in proteins: offset π-stacking and T-stacking (an edge-to-face arrangement). To evaluate how such interactions may influence structural stability of hemoproteins, we synthesized peptide-sandwiched mesohemes (PSMs) 2 and 3 in which the alanine-4 (Ala-4) residues in 1 have been replaced by phenylalanine (Phe) and tryptophan (Trp), respectively. The Co(III) analogues of 1, 2, and 3 (1-Co, 2-Co, and 3-Co, respectively) were also prepared. Histidine (His)-to-iron coordination in I had previously been shown to induce helical conformations in the peptides (helix content ~50% at 8°C). Molecular modeling studies suggested that Trp, but not Phe, could engage in edge-to-face interactions with the porphyrin if the peptides are fully helical. Replacing Ala-4 with Trp, but not with Phe, was thus predicted to favor enhanced peptide helix content. Circular dichroism spectra are consistent with significantly increased helix content in 3 relative to 1, but not in 2. Hydrogen-deuterium (H/D) exchange rates determined by electrospray ionization mass spectrometry, however, decrease in the order 1 >> 2 > 3, while pH titrations reveal that the stability of the model protein folds decreases in the order 3 > 2 >> 1. Furthermore, 1H NMR spectra of 2-Co and 3-Co indicate that the aromatic side chains in each compound are oriented within the shielding region of the porphyrin ring. Two-dimensional NOE and chemical shift data show that the helices in 3-Co are more highly organized than in 1-Co and span nearly the entire peptide sequence, while in 2-Co shorter helices of intermediate stability run between Phe-4 and Ala-13. The combined results indicate that aromatic side chain-porphyrin interactions in 2 and 3 stabilize their respective model protein folds, and suggest a similar role for the corresponding interactions in natural hemoproteins. Finally, the chemical shift patterns of the Trp side chains in 3-Co, the different effects of Phe and Trp on peptide architecture, and the pattern of chemical shifts exhibited by the α-NH and α-CH hydrogens in all three Co(III) PSMs demonstrate that the solution structures of these designed hemoproteins are similar to those predicted in molecular modeling studies.

UR - http://www.scopus.com/inward/record.url?scp=0033596309&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033596309&partnerID=8YFLogxK

U2 - 10.1021/ja990606r

DO - 10.1021/ja990606r

M3 - Article

AN - SCOPUS:0033596309

VL - 121

SP - 11798

EP - 11812

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 50

ER -