Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: A methodological report

James T. Cavanaugh, Vicki S. Mercer, Nicholas Stergiou

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

Background. Biomechanical measures of postural stability, while generally useful in neuroscience and physical rehabilitation research, may be limited in their ability to detect more subtle influences of attention on postural control. Approximate entropy (ApEn), a regularity statistic from nonlinear dynamics, recently has demonstrated relatively good measurement precision and shown promise for detecting subtle change in postural control after cerebral concussion. Our purpose was to further explore the responsiveness of ApEn by using it to evaluate the immediate, short-term effect of secondary cognitive task performance on postural control in healthy, young adults. Methods. Thirty healthy, young adults performed a modified version of the Sensory Organization Test featuring single (posture only) and dual (posture plus cognitive) task trials. ApEn values, root mean square (RMS) displacement, and equilibrium scores (ES) were calculated from anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) component time series. For each sensory condition, we compared the ability of the postural control parameters to detect an effect of cognitive task performance. Results. COP AP time series generally became more random (higher ApEn value) during dual task performance, resulting in a main effect of cognitive task (p = 0.004). In contrast, there was no significant effect of cognitive task for ApEn values of COP ML time series, RMS displacement (AP or ML) or ES. Conclusion. During dual task performance, ApEn revealed a change in the randomness of COP oscillations that occurred in a variety of sensory conditions, independent of changes in the amplitude of COP oscillations. The finding expands current support for the potential of ApEn to detect subtle changes in postural control. Implications for future studies of attention in neuroscience and physical rehabilitation are discussed.

Original languageEnglish (US)
Article number42
JournalJournal of NeuroEngineering and Rehabilitation
Volume4
DOIs
StatePublished - Dec 1 2007

Fingerprint

Entropy
Young Adult
Task Performance and Analysis
Pressure
Aptitude
Neurosciences
Posture
Brain Concussion
Nonlinear Dynamics
Rehabilitation

ASJC Scopus subject areas

  • Rehabilitation
  • Health Informatics

Cite this

@article{f9b1735b8f714a6da1d10f8eaf44a5f9,
title = "Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: A methodological report",
abstract = "Background. Biomechanical measures of postural stability, while generally useful in neuroscience and physical rehabilitation research, may be limited in their ability to detect more subtle influences of attention on postural control. Approximate entropy (ApEn), a regularity statistic from nonlinear dynamics, recently has demonstrated relatively good measurement precision and shown promise for detecting subtle change in postural control after cerebral concussion. Our purpose was to further explore the responsiveness of ApEn by using it to evaluate the immediate, short-term effect of secondary cognitive task performance on postural control in healthy, young adults. Methods. Thirty healthy, young adults performed a modified version of the Sensory Organization Test featuring single (posture only) and dual (posture plus cognitive) task trials. ApEn values, root mean square (RMS) displacement, and equilibrium scores (ES) were calculated from anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) component time series. For each sensory condition, we compared the ability of the postural control parameters to detect an effect of cognitive task performance. Results. COP AP time series generally became more random (higher ApEn value) during dual task performance, resulting in a main effect of cognitive task (p = 0.004). In contrast, there was no significant effect of cognitive task for ApEn values of COP ML time series, RMS displacement (AP or ML) or ES. Conclusion. During dual task performance, ApEn revealed a change in the randomness of COP oscillations that occurred in a variety of sensory conditions, independent of changes in the amplitude of COP oscillations. The finding expands current support for the potential of ApEn to detect subtle changes in postural control. Implications for future studies of attention in neuroscience and physical rehabilitation are discussed.",
author = "Cavanaugh, {James T.} and Mercer, {Vicki S.} and Nicholas Stergiou",
year = "2007",
month = "12",
day = "1",
doi = "10.1186/1743-0003-4-42",
language = "English (US)",
volume = "4",
journal = "Journal of NeuroEngineering and Rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults

T2 - A methodological report

AU - Cavanaugh, James T.

AU - Mercer, Vicki S.

AU - Stergiou, Nicholas

PY - 2007/12/1

Y1 - 2007/12/1

N2 - Background. Biomechanical measures of postural stability, while generally useful in neuroscience and physical rehabilitation research, may be limited in their ability to detect more subtle influences of attention on postural control. Approximate entropy (ApEn), a regularity statistic from nonlinear dynamics, recently has demonstrated relatively good measurement precision and shown promise for detecting subtle change in postural control after cerebral concussion. Our purpose was to further explore the responsiveness of ApEn by using it to evaluate the immediate, short-term effect of secondary cognitive task performance on postural control in healthy, young adults. Methods. Thirty healthy, young adults performed a modified version of the Sensory Organization Test featuring single (posture only) and dual (posture plus cognitive) task trials. ApEn values, root mean square (RMS) displacement, and equilibrium scores (ES) were calculated from anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) component time series. For each sensory condition, we compared the ability of the postural control parameters to detect an effect of cognitive task performance. Results. COP AP time series generally became more random (higher ApEn value) during dual task performance, resulting in a main effect of cognitive task (p = 0.004). In contrast, there was no significant effect of cognitive task for ApEn values of COP ML time series, RMS displacement (AP or ML) or ES. Conclusion. During dual task performance, ApEn revealed a change in the randomness of COP oscillations that occurred in a variety of sensory conditions, independent of changes in the amplitude of COP oscillations. The finding expands current support for the potential of ApEn to detect subtle changes in postural control. Implications for future studies of attention in neuroscience and physical rehabilitation are discussed.

AB - Background. Biomechanical measures of postural stability, while generally useful in neuroscience and physical rehabilitation research, may be limited in their ability to detect more subtle influences of attention on postural control. Approximate entropy (ApEn), a regularity statistic from nonlinear dynamics, recently has demonstrated relatively good measurement precision and shown promise for detecting subtle change in postural control after cerebral concussion. Our purpose was to further explore the responsiveness of ApEn by using it to evaluate the immediate, short-term effect of secondary cognitive task performance on postural control in healthy, young adults. Methods. Thirty healthy, young adults performed a modified version of the Sensory Organization Test featuring single (posture only) and dual (posture plus cognitive) task trials. ApEn values, root mean square (RMS) displacement, and equilibrium scores (ES) were calculated from anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) component time series. For each sensory condition, we compared the ability of the postural control parameters to detect an effect of cognitive task performance. Results. COP AP time series generally became more random (higher ApEn value) during dual task performance, resulting in a main effect of cognitive task (p = 0.004). In contrast, there was no significant effect of cognitive task for ApEn values of COP ML time series, RMS displacement (AP or ML) or ES. Conclusion. During dual task performance, ApEn revealed a change in the randomness of COP oscillations that occurred in a variety of sensory conditions, independent of changes in the amplitude of COP oscillations. The finding expands current support for the potential of ApEn to detect subtle changes in postural control. Implications for future studies of attention in neuroscience and physical rehabilitation are discussed.

UR - http://www.scopus.com/inward/record.url?scp=38049026455&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38049026455&partnerID=8YFLogxK

U2 - 10.1186/1743-0003-4-42

DO - 10.1186/1743-0003-4-42

M3 - Article

C2 - 17971209

AN - SCOPUS:38049026455

VL - 4

JO - Journal of NeuroEngineering and Rehabilitation

JF - Journal of NeuroEngineering and Rehabilitation

SN - 1743-0003

M1 - 42

ER -