Application of a critical wedge taper model to the tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard

Alvar Braathen, Steffen G. Bergh, Harmon Droge Maher

Research output: Contribution to journalArticle

68 Citations (Scopus)

Abstract

The Tertiary opening of the North Atlantic Ocean involved major and long-lived overall dextral transpression between the Svalbard and Greenland plates. On Spitsbergen, this tectonic event is manifest as a 100-200-km-wide contractional fold-thrust belt in the form of an east-pinching prism. This belt can be subdivided into (1) a western, basement-involved hinterland province that reveals more complex deformation, including thrust, transcurrent, and normal faulting, and (2) an eastern thin-skinned fold-thrust belt with structures oriented subparallel (north-northwest-south-southeast) to the transform plate boundary. The time-space distribution and interaction of different structural styles of Tertiary deformation evident on Spitsbergen support a model with linked, long-term and short-term (episodic) dynamic growth of a composite contractional and transcurrent fold-thrust wedge. The growth of a narrow, high-taper (critical-supercritical) contractional wedge occurred during northward-directed crustal shortening (stage 1) in an oblique, dextral transcurrent setting. Crustal thickening in the form of thrust uplift and basin inversion and strike-slip duplexing during the main contractional event (stages 2 and 3) created an unstable, supercritical wedge of basement and cover rocks in the hinterland. At the same time, a broader and more homogeneous frontal part of the wedge developed eastward by in-sequence imbrication in order to reduce the taper angle. Local erosion and lateral wedge extrusion (stages 3 and 4) modified the oversteepened hinterland wedge to a critical taper angle. Continued tectonic activity in the hinterland caused renewed internal imbrication of the frontal wedge, where deformation was accommodated by tear faulting and out-of-sequence thrusting (stage 4). Adjustment toward a stable taper geometry included local extension (stage 5) and erosion and sedimentation. In a transpressional fold-thrust belt, as on Spitsbergen, out-of-plane (orogen oblique to parallel) transport in the hinterland may cause local and lateral supercritical and subcritical wedge tapers. Hinterland geometries could trigger adjustments in a frontal thrust wedge in a decoupled situation, and/or orogen oblique or parallel motions in a coupled situation. Changing kinematics may thus be expected along strike in such an orogen.

Original languageEnglish (US)
Pages (from-to)1468-1485
Number of pages18
JournalBulletin of the Geological Society of America
Volume111
Issue number10
DOIs
StatePublished - Oct 1 1999

Fingerprint

thrust
fold
imbrication
faulting
erosion
geometry
tectonics
crustal shortening
transpression
crustal thickening
extrusion
plate boundary
transform
kinematics
uplift
sedimentation
basin
rock

ASJC Scopus subject areas

  • Geology

Cite this

Application of a critical wedge taper model to the tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. / Braathen, Alvar; Bergh, Steffen G.; Maher, Harmon Droge.

In: Bulletin of the Geological Society of America, Vol. 111, No. 10, 01.10.1999, p. 1468-1485.

Research output: Contribution to journalArticle

@article{9b19a691579147b39afc52f28e86745e,
title = "Application of a critical wedge taper model to the tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard",
abstract = "The Tertiary opening of the North Atlantic Ocean involved major and long-lived overall dextral transpression between the Svalbard and Greenland plates. On Spitsbergen, this tectonic event is manifest as a 100-200-km-wide contractional fold-thrust belt in the form of an east-pinching prism. This belt can be subdivided into (1) a western, basement-involved hinterland province that reveals more complex deformation, including thrust, transcurrent, and normal faulting, and (2) an eastern thin-skinned fold-thrust belt with structures oriented subparallel (north-northwest-south-southeast) to the transform plate boundary. The time-space distribution and interaction of different structural styles of Tertiary deformation evident on Spitsbergen support a model with linked, long-term and short-term (episodic) dynamic growth of a composite contractional and transcurrent fold-thrust wedge. The growth of a narrow, high-taper (critical-supercritical) contractional wedge occurred during northward-directed crustal shortening (stage 1) in an oblique, dextral transcurrent setting. Crustal thickening in the form of thrust uplift and basin inversion and strike-slip duplexing during the main contractional event (stages 2 and 3) created an unstable, supercritical wedge of basement and cover rocks in the hinterland. At the same time, a broader and more homogeneous frontal part of the wedge developed eastward by in-sequence imbrication in order to reduce the taper angle. Local erosion and lateral wedge extrusion (stages 3 and 4) modified the oversteepened hinterland wedge to a critical taper angle. Continued tectonic activity in the hinterland caused renewed internal imbrication of the frontal wedge, where deformation was accommodated by tear faulting and out-of-sequence thrusting (stage 4). Adjustment toward a stable taper geometry included local extension (stage 5) and erosion and sedimentation. In a transpressional fold-thrust belt, as on Spitsbergen, out-of-plane (orogen oblique to parallel) transport in the hinterland may cause local and lateral supercritical and subcritical wedge tapers. Hinterland geometries could trigger adjustments in a frontal thrust wedge in a decoupled situation, and/or orogen oblique or parallel motions in a coupled situation. Changing kinematics may thus be expected along strike in such an orogen.",
author = "Alvar Braathen and Bergh, {Steffen G.} and Maher, {Harmon Droge}",
year = "1999",
month = "10",
day = "1",
doi = "10.1130/0016-7606(1999)111<1468:AOACWT>2.3.CO;2",
language = "English (US)",
volume = "111",
pages = "1468--1485",
journal = "Bulletin of the Geological Society of America",
issn = "0016-7606",
publisher = "Geological Society of America",
number = "10",

}

TY - JOUR

T1 - Application of a critical wedge taper model to the tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard

AU - Braathen, Alvar

AU - Bergh, Steffen G.

AU - Maher, Harmon Droge

PY - 1999/10/1

Y1 - 1999/10/1

N2 - The Tertiary opening of the North Atlantic Ocean involved major and long-lived overall dextral transpression between the Svalbard and Greenland plates. On Spitsbergen, this tectonic event is manifest as a 100-200-km-wide contractional fold-thrust belt in the form of an east-pinching prism. This belt can be subdivided into (1) a western, basement-involved hinterland province that reveals more complex deformation, including thrust, transcurrent, and normal faulting, and (2) an eastern thin-skinned fold-thrust belt with structures oriented subparallel (north-northwest-south-southeast) to the transform plate boundary. The time-space distribution and interaction of different structural styles of Tertiary deformation evident on Spitsbergen support a model with linked, long-term and short-term (episodic) dynamic growth of a composite contractional and transcurrent fold-thrust wedge. The growth of a narrow, high-taper (critical-supercritical) contractional wedge occurred during northward-directed crustal shortening (stage 1) in an oblique, dextral transcurrent setting. Crustal thickening in the form of thrust uplift and basin inversion and strike-slip duplexing during the main contractional event (stages 2 and 3) created an unstable, supercritical wedge of basement and cover rocks in the hinterland. At the same time, a broader and more homogeneous frontal part of the wedge developed eastward by in-sequence imbrication in order to reduce the taper angle. Local erosion and lateral wedge extrusion (stages 3 and 4) modified the oversteepened hinterland wedge to a critical taper angle. Continued tectonic activity in the hinterland caused renewed internal imbrication of the frontal wedge, where deformation was accommodated by tear faulting and out-of-sequence thrusting (stage 4). Adjustment toward a stable taper geometry included local extension (stage 5) and erosion and sedimentation. In a transpressional fold-thrust belt, as on Spitsbergen, out-of-plane (orogen oblique to parallel) transport in the hinterland may cause local and lateral supercritical and subcritical wedge tapers. Hinterland geometries could trigger adjustments in a frontal thrust wedge in a decoupled situation, and/or orogen oblique or parallel motions in a coupled situation. Changing kinematics may thus be expected along strike in such an orogen.

AB - The Tertiary opening of the North Atlantic Ocean involved major and long-lived overall dextral transpression between the Svalbard and Greenland plates. On Spitsbergen, this tectonic event is manifest as a 100-200-km-wide contractional fold-thrust belt in the form of an east-pinching prism. This belt can be subdivided into (1) a western, basement-involved hinterland province that reveals more complex deformation, including thrust, transcurrent, and normal faulting, and (2) an eastern thin-skinned fold-thrust belt with structures oriented subparallel (north-northwest-south-southeast) to the transform plate boundary. The time-space distribution and interaction of different structural styles of Tertiary deformation evident on Spitsbergen support a model with linked, long-term and short-term (episodic) dynamic growth of a composite contractional and transcurrent fold-thrust wedge. The growth of a narrow, high-taper (critical-supercritical) contractional wedge occurred during northward-directed crustal shortening (stage 1) in an oblique, dextral transcurrent setting. Crustal thickening in the form of thrust uplift and basin inversion and strike-slip duplexing during the main contractional event (stages 2 and 3) created an unstable, supercritical wedge of basement and cover rocks in the hinterland. At the same time, a broader and more homogeneous frontal part of the wedge developed eastward by in-sequence imbrication in order to reduce the taper angle. Local erosion and lateral wedge extrusion (stages 3 and 4) modified the oversteepened hinterland wedge to a critical taper angle. Continued tectonic activity in the hinterland caused renewed internal imbrication of the frontal wedge, where deformation was accommodated by tear faulting and out-of-sequence thrusting (stage 4). Adjustment toward a stable taper geometry included local extension (stage 5) and erosion and sedimentation. In a transpressional fold-thrust belt, as on Spitsbergen, out-of-plane (orogen oblique to parallel) transport in the hinterland may cause local and lateral supercritical and subcritical wedge tapers. Hinterland geometries could trigger adjustments in a frontal thrust wedge in a decoupled situation, and/or orogen oblique or parallel motions in a coupled situation. Changing kinematics may thus be expected along strike in such an orogen.

UR - http://www.scopus.com/inward/record.url?scp=0033403450&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033403450&partnerID=8YFLogxK

U2 - 10.1130/0016-7606(1999)111<1468:AOACWT>2.3.CO;2

DO - 10.1130/0016-7606(1999)111<1468:AOACWT>2.3.CO;2

M3 - Article

VL - 111

SP - 1468

EP - 1485

JO - Bulletin of the Geological Society of America

JF - Bulletin of the Geological Society of America

SN - 0016-7606

IS - 10

ER -