Angiotensin II-induced upregulation of AT1 receptor expression: Sequential activation of NF-κB and Elk-1 in neurons

Amit K. Mitra, Lie Gao, Irving H. Zucker

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

It has been clearly established that increased circulating angiotensin II (ANG II) with concurrent upregulation of brain and peripheral ANG II type 1 receptors (AT1R) are important mediators in the pathophysiology of several diseases characterized by sympatho-excitation. In an effort to further understand the regulation of AT1R expression in neurons, we determined the role of sequential activation of the transcription factors nuclear factor-κB (NF-κB) and Ets-like protein 1 (Elk-1) in AT 1R upregulation. We used CATH.a neurons as our neuronal cell model. Cells were treated with ANG II (100 nM) over a preset time course. Following ANG II activation, there was a temporal increase in the p65 subunit of NF-κB that was observed at 30 min, peaked at 1 h, and was sustained up to 24 h. There was a concomitant decrease of IκB and increased IκK expression. We also observed an increase in AT1R expression which followed the temporal increase of NF-κB. The activation of NF-κB was blocked by using the inhibitors parthenolide or p65 small interfering RNA (siRNA) which both led to a decrease in AT1R expression. The expression of Elk-1 was upregulated over a time period following ANG II activation and was decreased following NF-κB inhibition. p65-DNA binding was assessed using electrophoretic mobility shift assay, and it was shown that there was a time-dependent increased binding that was inhibited by means of parthenolide pretreatment or siRNA-mediated p65 gene silencing. Therefore, our results suggest a combined role for the transcription factors NF-κB and Elk-1 in the upregulation of AT1R in the CATH.a cell neuronal model. These data imply a positive feedback mechanism that may impact neuronal discharge sensitivity in response to ANG II.

Original languageEnglish (US)
Pages (from-to)C561-C569
JournalAmerican Journal of Physiology - Cell Physiology
Volume299
Issue number3
DOIs
StatePublished - Sep 1 2010

Fingerprint

ets-Domain Protein Elk-1
Angiotensin II
Up-Regulation
Neurons
Small Interfering RNA
Transcription Factors
Angiotensin Type 1 Receptor
Gene Silencing
Electrophoretic Mobility Shift Assay
DNA
Brain

Keywords

  • Angiotensin II type 1 receptor
  • CATH.a
  • Cell culture
  • G protein-coupled receptors
  • Small interfering RNA

ASJC Scopus subject areas

  • Physiology
  • Cell Biology

Cite this

@article{1bf3571e2bf54764b1bdf29653f0ba7d,
title = "Angiotensin II-induced upregulation of AT1 receptor expression: Sequential activation of NF-κB and Elk-1 in neurons",
abstract = "It has been clearly established that increased circulating angiotensin II (ANG II) with concurrent upregulation of brain and peripheral ANG II type 1 receptors (AT1R) are important mediators in the pathophysiology of several diseases characterized by sympatho-excitation. In an effort to further understand the regulation of AT1R expression in neurons, we determined the role of sequential activation of the transcription factors nuclear factor-κB (NF-κB) and Ets-like protein 1 (Elk-1) in AT 1R upregulation. We used CATH.a neurons as our neuronal cell model. Cells were treated with ANG II (100 nM) over a preset time course. Following ANG II activation, there was a temporal increase in the p65 subunit of NF-κB that was observed at 30 min, peaked at 1 h, and was sustained up to 24 h. There was a concomitant decrease of IκB and increased IκK expression. We also observed an increase in AT1R expression which followed the temporal increase of NF-κB. The activation of NF-κB was blocked by using the inhibitors parthenolide or p65 small interfering RNA (siRNA) which both led to a decrease in AT1R expression. The expression of Elk-1 was upregulated over a time period following ANG II activation and was decreased following NF-κB inhibition. p65-DNA binding was assessed using electrophoretic mobility shift assay, and it was shown that there was a time-dependent increased binding that was inhibited by means of parthenolide pretreatment or siRNA-mediated p65 gene silencing. Therefore, our results suggest a combined role for the transcription factors NF-κB and Elk-1 in the upregulation of AT1R in the CATH.a cell neuronal model. These data imply a positive feedback mechanism that may impact neuronal discharge sensitivity in response to ANG II.",
keywords = "Angiotensin II type 1 receptor, CATH.a, Cell culture, G protein-coupled receptors, Small interfering RNA",
author = "Mitra, {Amit K.} and Lie Gao and Zucker, {Irving H.}",
year = "2010",
month = "9",
day = "1",
doi = "10.1152/ajpcell.00127.2010",
language = "English (US)",
volume = "299",
pages = "C561--C569",
journal = "American Journal of Physiology - Renal Physiology",
issn = "0363-6127",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Angiotensin II-induced upregulation of AT1 receptor expression

T2 - Sequential activation of NF-κB and Elk-1 in neurons

AU - Mitra, Amit K.

AU - Gao, Lie

AU - Zucker, Irving H.

PY - 2010/9/1

Y1 - 2010/9/1

N2 - It has been clearly established that increased circulating angiotensin II (ANG II) with concurrent upregulation of brain and peripheral ANG II type 1 receptors (AT1R) are important mediators in the pathophysiology of several diseases characterized by sympatho-excitation. In an effort to further understand the regulation of AT1R expression in neurons, we determined the role of sequential activation of the transcription factors nuclear factor-κB (NF-κB) and Ets-like protein 1 (Elk-1) in AT 1R upregulation. We used CATH.a neurons as our neuronal cell model. Cells were treated with ANG II (100 nM) over a preset time course. Following ANG II activation, there was a temporal increase in the p65 subunit of NF-κB that was observed at 30 min, peaked at 1 h, and was sustained up to 24 h. There was a concomitant decrease of IκB and increased IκK expression. We also observed an increase in AT1R expression which followed the temporal increase of NF-κB. The activation of NF-κB was blocked by using the inhibitors parthenolide or p65 small interfering RNA (siRNA) which both led to a decrease in AT1R expression. The expression of Elk-1 was upregulated over a time period following ANG II activation and was decreased following NF-κB inhibition. p65-DNA binding was assessed using electrophoretic mobility shift assay, and it was shown that there was a time-dependent increased binding that was inhibited by means of parthenolide pretreatment or siRNA-mediated p65 gene silencing. Therefore, our results suggest a combined role for the transcription factors NF-κB and Elk-1 in the upregulation of AT1R in the CATH.a cell neuronal model. These data imply a positive feedback mechanism that may impact neuronal discharge sensitivity in response to ANG II.

AB - It has been clearly established that increased circulating angiotensin II (ANG II) with concurrent upregulation of brain and peripheral ANG II type 1 receptors (AT1R) are important mediators in the pathophysiology of several diseases characterized by sympatho-excitation. In an effort to further understand the regulation of AT1R expression in neurons, we determined the role of sequential activation of the transcription factors nuclear factor-κB (NF-κB) and Ets-like protein 1 (Elk-1) in AT 1R upregulation. We used CATH.a neurons as our neuronal cell model. Cells were treated with ANG II (100 nM) over a preset time course. Following ANG II activation, there was a temporal increase in the p65 subunit of NF-κB that was observed at 30 min, peaked at 1 h, and was sustained up to 24 h. There was a concomitant decrease of IκB and increased IκK expression. We also observed an increase in AT1R expression which followed the temporal increase of NF-κB. The activation of NF-κB was blocked by using the inhibitors parthenolide or p65 small interfering RNA (siRNA) which both led to a decrease in AT1R expression. The expression of Elk-1 was upregulated over a time period following ANG II activation and was decreased following NF-κB inhibition. p65-DNA binding was assessed using electrophoretic mobility shift assay, and it was shown that there was a time-dependent increased binding that was inhibited by means of parthenolide pretreatment or siRNA-mediated p65 gene silencing. Therefore, our results suggest a combined role for the transcription factors NF-κB and Elk-1 in the upregulation of AT1R in the CATH.a cell neuronal model. These data imply a positive feedback mechanism that may impact neuronal discharge sensitivity in response to ANG II.

KW - Angiotensin II type 1 receptor

KW - CATH.a

KW - Cell culture

KW - G protein-coupled receptors

KW - Small interfering RNA

UR - http://www.scopus.com/inward/record.url?scp=77956579849&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77956579849&partnerID=8YFLogxK

U2 - 10.1152/ajpcell.00127.2010

DO - 10.1152/ajpcell.00127.2010

M3 - Article

C2 - 20554912

AN - SCOPUS:77956579849

VL - 299

SP - C561-C569

JO - American Journal of Physiology - Renal Physiology

JF - American Journal of Physiology - Renal Physiology

SN - 0363-6127

IS - 3

ER -