Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, β-glucuronidase-negative enterohemorrhagic Escherichia coli O157

J. Kim, J. Nietfeldt, J. Ju, J. Wise, N. Fegan, P. Desmarchelier, A. K. Benson

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

The O157:H7 lineage of enterohemorrhagic Escherichia coli is a geographically disseminated complex of highly related genotypes that share common ancestry. The common clone that is found worldwide carries several markers of events in its evolution, including markers for acquisition of virulence genes and loss of physiological characteristics, such as sorbitol fermentation ability and β-glucuronidase production. Populations of variants that are distinct with respect to motility and the sorbitol and β-glucuronidase markers appear to have diverged at several points along the inferred evolutionary pathway. In addition to these variants, distinct subpopulations of the contemporary non-sorbitol-fermenting, β-glucuronidase-negative O157:H7 clone were recently detected among bovine and human clinical isolates in the United Stares by using high-resolution genome comparison. In order to determine if these recently described subpopulations were derived from a regional or ancestral divergence event, we used octamer-based genome scanning, marker sorting, and DNA sequence analysis to examine their phylogenetic relationship to populations of non-sorbitol-fermenting, β-glucuronidase negative O157:H7 and O157:H- strains from Australia. The inferred phylogeny is consistent with the hypothesis that subpopulations on each continent resulted from geographic spread of an ancestral divergence event and subsequent expansion of distinct subpopulations. Marker sorting and DNA sequence analyses identified sets of monophyletic markers consistent with the pattern of divergence and demonstrated that phylogeographic variation occurred through emergence of regional subclones and concentration of regional polymorphisms among distinct subpopulations. DNA sequence analysis of representative polyphyletic markers showed that genome diversity accrued through random drift and bacteriophage-mediated events.

Original languageEnglish (US)
Pages (from-to)6885-6897
Number of pages13
JournalJournal of bacteriology
Volume183
Issue number23
DOIs
StatePublished - Nov 26 2001

Fingerprint

Enterohemorrhagic Escherichia coli
Escherichia coli O157
Sorbitol
Glucuronidase
DNA Sequence Analysis
Genome
Clone Cells
Phylogeny
Bacteriophages
Population
Fermentation
Virulence
Genotype
Genes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Cite this

Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, β-glucuronidase-negative enterohemorrhagic Escherichia coli O157. / Kim, J.; Nietfeldt, J.; Ju, J.; Wise, J.; Fegan, N.; Desmarchelier, P.; Benson, A. K.

In: Journal of bacteriology, Vol. 183, No. 23, 26.11.2001, p. 6885-6897.

Research output: Contribution to journalArticle

@article{d6fad263eecf46f0a9b147f7d55570c5,
title = "Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, β-glucuronidase-negative enterohemorrhagic Escherichia coli O157",
abstract = "The O157:H7 lineage of enterohemorrhagic Escherichia coli is a geographically disseminated complex of highly related genotypes that share common ancestry. The common clone that is found worldwide carries several markers of events in its evolution, including markers for acquisition of virulence genes and loss of physiological characteristics, such as sorbitol fermentation ability and β-glucuronidase production. Populations of variants that are distinct with respect to motility and the sorbitol and β-glucuronidase markers appear to have diverged at several points along the inferred evolutionary pathway. In addition to these variants, distinct subpopulations of the contemporary non-sorbitol-fermenting, β-glucuronidase-negative O157:H7 clone were recently detected among bovine and human clinical isolates in the United Stares by using high-resolution genome comparison. In order to determine if these recently described subpopulations were derived from a regional or ancestral divergence event, we used octamer-based genome scanning, marker sorting, and DNA sequence analysis to examine their phylogenetic relationship to populations of non-sorbitol-fermenting, β-glucuronidase negative O157:H7 and O157:H- strains from Australia. The inferred phylogeny is consistent with the hypothesis that subpopulations on each continent resulted from geographic spread of an ancestral divergence event and subsequent expansion of distinct subpopulations. Marker sorting and DNA sequence analyses identified sets of monophyletic markers consistent with the pattern of divergence and demonstrated that phylogeographic variation occurred through emergence of regional subclones and concentration of regional polymorphisms among distinct subpopulations. DNA sequence analysis of representative polyphyletic markers showed that genome diversity accrued through random drift and bacteriophage-mediated events.",
author = "J. Kim and J. Nietfeldt and J. Ju and J. Wise and N. Fegan and P. Desmarchelier and Benson, {A. K.}",
year = "2001",
month = "11",
day = "26",
doi = "10.1128/JB.183.23.6885-6897.2001",
language = "English (US)",
volume = "183",
pages = "6885--6897",
journal = "Journal of Bacteriology",
issn = "0021-9193",
publisher = "American Society for Microbiology",
number = "23",

}

TY - JOUR

T1 - Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, β-glucuronidase-negative enterohemorrhagic Escherichia coli O157

AU - Kim, J.

AU - Nietfeldt, J.

AU - Ju, J.

AU - Wise, J.

AU - Fegan, N.

AU - Desmarchelier, P.

AU - Benson, A. K.

PY - 2001/11/26

Y1 - 2001/11/26

N2 - The O157:H7 lineage of enterohemorrhagic Escherichia coli is a geographically disseminated complex of highly related genotypes that share common ancestry. The common clone that is found worldwide carries several markers of events in its evolution, including markers for acquisition of virulence genes and loss of physiological characteristics, such as sorbitol fermentation ability and β-glucuronidase production. Populations of variants that are distinct with respect to motility and the sorbitol and β-glucuronidase markers appear to have diverged at several points along the inferred evolutionary pathway. In addition to these variants, distinct subpopulations of the contemporary non-sorbitol-fermenting, β-glucuronidase-negative O157:H7 clone were recently detected among bovine and human clinical isolates in the United Stares by using high-resolution genome comparison. In order to determine if these recently described subpopulations were derived from a regional or ancestral divergence event, we used octamer-based genome scanning, marker sorting, and DNA sequence analysis to examine their phylogenetic relationship to populations of non-sorbitol-fermenting, β-glucuronidase negative O157:H7 and O157:H- strains from Australia. The inferred phylogeny is consistent with the hypothesis that subpopulations on each continent resulted from geographic spread of an ancestral divergence event and subsequent expansion of distinct subpopulations. Marker sorting and DNA sequence analyses identified sets of monophyletic markers consistent with the pattern of divergence and demonstrated that phylogeographic variation occurred through emergence of regional subclones and concentration of regional polymorphisms among distinct subpopulations. DNA sequence analysis of representative polyphyletic markers showed that genome diversity accrued through random drift and bacteriophage-mediated events.

AB - The O157:H7 lineage of enterohemorrhagic Escherichia coli is a geographically disseminated complex of highly related genotypes that share common ancestry. The common clone that is found worldwide carries several markers of events in its evolution, including markers for acquisition of virulence genes and loss of physiological characteristics, such as sorbitol fermentation ability and β-glucuronidase production. Populations of variants that are distinct with respect to motility and the sorbitol and β-glucuronidase markers appear to have diverged at several points along the inferred evolutionary pathway. In addition to these variants, distinct subpopulations of the contemporary non-sorbitol-fermenting, β-glucuronidase-negative O157:H7 clone were recently detected among bovine and human clinical isolates in the United Stares by using high-resolution genome comparison. In order to determine if these recently described subpopulations were derived from a regional or ancestral divergence event, we used octamer-based genome scanning, marker sorting, and DNA sequence analysis to examine their phylogenetic relationship to populations of non-sorbitol-fermenting, β-glucuronidase negative O157:H7 and O157:H- strains from Australia. The inferred phylogeny is consistent with the hypothesis that subpopulations on each continent resulted from geographic spread of an ancestral divergence event and subsequent expansion of distinct subpopulations. Marker sorting and DNA sequence analyses identified sets of monophyletic markers consistent with the pattern of divergence and demonstrated that phylogeographic variation occurred through emergence of regional subclones and concentration of regional polymorphisms among distinct subpopulations. DNA sequence analysis of representative polyphyletic markers showed that genome diversity accrued through random drift and bacteriophage-mediated events.

UR - http://www.scopus.com/inward/record.url?scp=0035173825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035173825&partnerID=8YFLogxK

U2 - 10.1128/JB.183.23.6885-6897.2001

DO - 10.1128/JB.183.23.6885-6897.2001

M3 - Article

C2 - 11698378

AN - SCOPUS:0035173825

VL - 183

SP - 6885

EP - 6897

JO - Journal of Bacteriology

JF - Journal of Bacteriology

SN - 0021-9193

IS - 23

ER -