Analysis of the cell cycle regulatory protein (E2F1) after infection of cultured cells with bovine herpesvirus 1 (BHV-1) or herpes simplex virus type 1 (HSV-1)

Aspen Workman, Clinton J Jones

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The E2F family of cellular transcription factors controls cell cycle progression and cell death. During cell cycle progression, activated cyclin-dependent kinases phosphorylate the retinoblastoma (Rb) protein, causing the release and activation of E2F family members. Previous studies demonstrated that bovine herpes virus 1 (BHV-1) productive infection increases E2F1 protein levels, the bICP0 early promoter is activated more than 100 fold by E2F1 or E2F2, and silencing E2F1 reduced the efficiency of productive infection. In this study, the effect of herpes simplex virus type 1 (HSV-1) productive infection on E2F protein levels and regulation of E2F dependent transcription was compared to BHV-1 infection in the same permissive cell line, rabbit skin (RS) cells. Silencing E2F1 with a specific siRNA reduced HSV-1 productive infection approximately 10 fold in RS cells, and total E2F1 protein levels increased during productive infection. In contrast to RS cells infected with BHV-1, a fraction of total E2F1 protein was localized to the cytoplasm in HSV-1 infected RS cells. Furthermore, E2F1 did not efficiently trans-activate the HSV-1 ICP0 or ICP4 promoter. When RS cells were transfected with an E2F reporter construct or the cyclin D1 promoter and then infected with BHV-1, promoter activity increased after infection. In contrast, HSV-1 infection of RS cells had little effect on E2F dependent transcription and cyclin D1 promoter activity was reduced. In summary, these studies indicated that silencing E2F1 reduced the efficiency of HSV-1 and BHV-1 productive infection. However, only BHV-1 productive infection induced E2F dependent transcription.

Original languageEnglish (US)
Pages (from-to)66-73
Number of pages8
JournalVirus Research
Volume160
Issue number1-2
DOIs
StatePublished - Sep 1 2011

Fingerprint

Bovine Herpesvirus 1
Cell Cycle Proteins
Human Herpesvirus 1
Cultured Cells
Rabbits
Infection
Skin
Cyclin D1
E2F Transcription Factors
Herpesviridae Infections
Retinoblastoma Protein
Proteins
Cyclin-Dependent Kinases
Virus Diseases
Cell Cycle Checkpoints
Small Interfering RNA
Cell Cycle
Cytoplasm
Cell Death
Transcription Factors

Keywords

  • Bovine herpesvirus 1
  • E2F dependent transcription
  • Herpes simplex virus type 1
  • Productive infection

ASJC Scopus subject areas

  • Cancer Research
  • Infectious Diseases
  • Virology

Cite this

Analysis of the cell cycle regulatory protein (E2F1) after infection of cultured cells with bovine herpesvirus 1 (BHV-1) or herpes simplex virus type 1 (HSV-1). / Workman, Aspen; Jones, Clinton J.

In: Virus Research, Vol. 160, No. 1-2, 01.09.2011, p. 66-73.

Research output: Contribution to journalArticle

@article{75983e4ad6de4416bd288a1bcef657a0,
title = "Analysis of the cell cycle regulatory protein (E2F1) after infection of cultured cells with bovine herpesvirus 1 (BHV-1) or herpes simplex virus type 1 (HSV-1)",
abstract = "The E2F family of cellular transcription factors controls cell cycle progression and cell death. During cell cycle progression, activated cyclin-dependent kinases phosphorylate the retinoblastoma (Rb) protein, causing the release and activation of E2F family members. Previous studies demonstrated that bovine herpes virus 1 (BHV-1) productive infection increases E2F1 protein levels, the bICP0 early promoter is activated more than 100 fold by E2F1 or E2F2, and silencing E2F1 reduced the efficiency of productive infection. In this study, the effect of herpes simplex virus type 1 (HSV-1) productive infection on E2F protein levels and regulation of E2F dependent transcription was compared to BHV-1 infection in the same permissive cell line, rabbit skin (RS) cells. Silencing E2F1 with a specific siRNA reduced HSV-1 productive infection approximately 10 fold in RS cells, and total E2F1 protein levels increased during productive infection. In contrast to RS cells infected with BHV-1, a fraction of total E2F1 protein was localized to the cytoplasm in HSV-1 infected RS cells. Furthermore, E2F1 did not efficiently trans-activate the HSV-1 ICP0 or ICP4 promoter. When RS cells were transfected with an E2F reporter construct or the cyclin D1 promoter and then infected with BHV-1, promoter activity increased after infection. In contrast, HSV-1 infection of RS cells had little effect on E2F dependent transcription and cyclin D1 promoter activity was reduced. In summary, these studies indicated that silencing E2F1 reduced the efficiency of HSV-1 and BHV-1 productive infection. However, only BHV-1 productive infection induced E2F dependent transcription.",
keywords = "Bovine herpesvirus 1, E2F dependent transcription, Herpes simplex virus type 1, Productive infection",
author = "Aspen Workman and Jones, {Clinton J}",
year = "2011",
month = "9",
day = "1",
doi = "10.1016/j.virusres.2011.05.009",
language = "English (US)",
volume = "160",
pages = "66--73",
journal = "Virus Research",
issn = "0168-1702",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Analysis of the cell cycle regulatory protein (E2F1) after infection of cultured cells with bovine herpesvirus 1 (BHV-1) or herpes simplex virus type 1 (HSV-1)

AU - Workman, Aspen

AU - Jones, Clinton J

PY - 2011/9/1

Y1 - 2011/9/1

N2 - The E2F family of cellular transcription factors controls cell cycle progression and cell death. During cell cycle progression, activated cyclin-dependent kinases phosphorylate the retinoblastoma (Rb) protein, causing the release and activation of E2F family members. Previous studies demonstrated that bovine herpes virus 1 (BHV-1) productive infection increases E2F1 protein levels, the bICP0 early promoter is activated more than 100 fold by E2F1 or E2F2, and silencing E2F1 reduced the efficiency of productive infection. In this study, the effect of herpes simplex virus type 1 (HSV-1) productive infection on E2F protein levels and regulation of E2F dependent transcription was compared to BHV-1 infection in the same permissive cell line, rabbit skin (RS) cells. Silencing E2F1 with a specific siRNA reduced HSV-1 productive infection approximately 10 fold in RS cells, and total E2F1 protein levels increased during productive infection. In contrast to RS cells infected with BHV-1, a fraction of total E2F1 protein was localized to the cytoplasm in HSV-1 infected RS cells. Furthermore, E2F1 did not efficiently trans-activate the HSV-1 ICP0 or ICP4 promoter. When RS cells were transfected with an E2F reporter construct or the cyclin D1 promoter and then infected with BHV-1, promoter activity increased after infection. In contrast, HSV-1 infection of RS cells had little effect on E2F dependent transcription and cyclin D1 promoter activity was reduced. In summary, these studies indicated that silencing E2F1 reduced the efficiency of HSV-1 and BHV-1 productive infection. However, only BHV-1 productive infection induced E2F dependent transcription.

AB - The E2F family of cellular transcription factors controls cell cycle progression and cell death. During cell cycle progression, activated cyclin-dependent kinases phosphorylate the retinoblastoma (Rb) protein, causing the release and activation of E2F family members. Previous studies demonstrated that bovine herpes virus 1 (BHV-1) productive infection increases E2F1 protein levels, the bICP0 early promoter is activated more than 100 fold by E2F1 or E2F2, and silencing E2F1 reduced the efficiency of productive infection. In this study, the effect of herpes simplex virus type 1 (HSV-1) productive infection on E2F protein levels and regulation of E2F dependent transcription was compared to BHV-1 infection in the same permissive cell line, rabbit skin (RS) cells. Silencing E2F1 with a specific siRNA reduced HSV-1 productive infection approximately 10 fold in RS cells, and total E2F1 protein levels increased during productive infection. In contrast to RS cells infected with BHV-1, a fraction of total E2F1 protein was localized to the cytoplasm in HSV-1 infected RS cells. Furthermore, E2F1 did not efficiently trans-activate the HSV-1 ICP0 or ICP4 promoter. When RS cells were transfected with an E2F reporter construct or the cyclin D1 promoter and then infected with BHV-1, promoter activity increased after infection. In contrast, HSV-1 infection of RS cells had little effect on E2F dependent transcription and cyclin D1 promoter activity was reduced. In summary, these studies indicated that silencing E2F1 reduced the efficiency of HSV-1 and BHV-1 productive infection. However, only BHV-1 productive infection induced E2F dependent transcription.

KW - Bovine herpesvirus 1

KW - E2F dependent transcription

KW - Herpes simplex virus type 1

KW - Productive infection

UR - http://www.scopus.com/inward/record.url?scp=80052169080&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052169080&partnerID=8YFLogxK

U2 - 10.1016/j.virusres.2011.05.009

DO - 10.1016/j.virusres.2011.05.009

M3 - Article

VL - 160

SP - 66

EP - 73

JO - Virus Research

JF - Virus Research

SN - 0168-1702

IS - 1-2

ER -