Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism

Joseph Harold Sisson, Jacqueline A. Pavlik, Todd A Wyatt

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Background: Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Methods: Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Results: Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Conclusions: Alcohol rapidly and sequentially activates the eNOS→NO→GC→cGMP→PKG and sAC→cAMP→ PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol exposure. Furthermore, these findings indicate that airway cilia are exquisitely sensitive to the effects of alcohol and substantiate a key role for alcohol in the alterations of mucociliary clearance associated with even low levels of alcohol intake. We speculate that this same axoneme-based alcohol activation pathway is down regulated following long-term high alcohol exposure and that the isolated axoneme preparation provides an excellent model for studying the mechanism of alcohol-mediated cilia dysfunction.

Original languageEnglish (US)
Pages (from-to)610-616
Number of pages7
JournalAlcoholism: Clinical and Experimental Research
Volume33
Issue number4
DOIs
StatePublished - Apr 1 2009

Fingerprint

Axoneme
Cyclic Nucleotides
Nitric Oxide
Phosphotransferases
Alcohols
Cilia
Chemical activation
Organelles
Mucociliary Clearance
Lung
Adenylyl Cyclases
Basal Bodies

Keywords

  • Alcohol
  • Axonemes
  • Cilia
  • Ethanol
  • Lung Epithelium
  • Mucociliary Clearance
  • PKA
  • PKG
  • cAMP
  • cGMP

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Toxicology
  • Psychiatry and Mental health

Cite this

@article{bd4794a69fef4ea9b4f3ec39a215fb01,
title = "Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism",
abstract = "Background: Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Methods: Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Results: Alcohol rapidly stimulated axoneme beating 40{\%} above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Conclusions: Alcohol rapidly and sequentially activates the eNOS→NO→GC→cGMP→PKG and sAC→cAMP→ PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol exposure. Furthermore, these findings indicate that airway cilia are exquisitely sensitive to the effects of alcohol and substantiate a key role for alcohol in the alterations of mucociliary clearance associated with even low levels of alcohol intake. We speculate that this same axoneme-based alcohol activation pathway is down regulated following long-term high alcohol exposure and that the isolated axoneme preparation provides an excellent model for studying the mechanism of alcohol-mediated cilia dysfunction.",
keywords = "Alcohol, Axonemes, Cilia, Ethanol, Lung Epithelium, Mucociliary Clearance, PKA, PKG, cAMP, cGMP",
author = "Sisson, {Joseph Harold} and Pavlik, {Jacqueline A.} and Wyatt, {Todd A}",
year = "2009",
month = "4",
day = "1",
doi = "10.1111/j.1530-0277.2008.00875.x",
language = "English (US)",
volume = "33",
pages = "610--616",
journal = "Alcoholism: Clinical and Experimental Research",
issn = "0145-6008",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism

AU - Sisson, Joseph Harold

AU - Pavlik, Jacqueline A.

AU - Wyatt, Todd A

PY - 2009/4/1

Y1 - 2009/4/1

N2 - Background: Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Methods: Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Results: Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Conclusions: Alcohol rapidly and sequentially activates the eNOS→NO→GC→cGMP→PKG and sAC→cAMP→ PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol exposure. Furthermore, these findings indicate that airway cilia are exquisitely sensitive to the effects of alcohol and substantiate a key role for alcohol in the alterations of mucociliary clearance associated with even low levels of alcohol intake. We speculate that this same axoneme-based alcohol activation pathway is down regulated following long-term high alcohol exposure and that the isolated axoneme preparation provides an excellent model for studying the mechanism of alcohol-mediated cilia dysfunction.

AB - Background: Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Methods: Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Results: Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Conclusions: Alcohol rapidly and sequentially activates the eNOS→NO→GC→cGMP→PKG and sAC→cAMP→ PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol exposure. Furthermore, these findings indicate that airway cilia are exquisitely sensitive to the effects of alcohol and substantiate a key role for alcohol in the alterations of mucociliary clearance associated with even low levels of alcohol intake. We speculate that this same axoneme-based alcohol activation pathway is down regulated following long-term high alcohol exposure and that the isolated axoneme preparation provides an excellent model for studying the mechanism of alcohol-mediated cilia dysfunction.

KW - Alcohol

KW - Axonemes

KW - Cilia

KW - Ethanol

KW - Lung Epithelium

KW - Mucociliary Clearance

KW - PKA

KW - PKG

KW - cAMP

KW - cGMP

UR - http://www.scopus.com/inward/record.url?scp=63149128130&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=63149128130&partnerID=8YFLogxK

U2 - 10.1111/j.1530-0277.2008.00875.x

DO - 10.1111/j.1530-0277.2008.00875.x

M3 - Article

C2 - 19183138

AN - SCOPUS:63149128130

VL - 33

SP - 610

EP - 616

JO - Alcoholism: Clinical and Experimental Research

JF - Alcoholism: Clinical and Experimental Research

SN - 0145-6008

IS - 4

ER -