Absence of manganese superoxide dismutase delays p53-induced tumor formation

Adam J. Case, Frederick E. Domann

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Background: Manganese superoxide dismutase (MnSOD) is a mitochondrial antioxidant enzyme that is down-regulated in a majority of cancers. Due to this observation, as well as MnSOD's potent antioxidant enzymatic activity, MnSOD has been suggested as a tumor suppressor for over 30 years. However, testing this postulate has proven difficult due to the early post-natal lethality of the MnSOD constitutive knock-out mouse. We have previously used a conditional tissue-specific MnSOD knock-out mouse to study the effects of MnSOD loss on the development of various cell types, but long-term cancer development studies have not been performed. We hypothesized the complete loss of MnSOD would significantly increase the rate of tumor formation in a tissue-specific manner. Results: Utilizing a hematopoietic stem cell specific Cre-recombinase mouse model, we created pan-hematopoietic cell MnSOD knock-out mice. Additionally, we combined this MnSOD knock-out with two well established models of lymphoma development: B-lymphocyte specific Myc over-expression and conditional pan-hematopoietic cell p53 knock-out. Mice were allowed to age unchallenged until illness or death had occurred. Contrary to our initial hypothesis, the loss of MnSOD alone was insufficient in causing an increase in tumor formation, but did cause significant life-shortening skin pathology in a strain-dependent manner. Moreover, the loss of MnSOD in conjunction with either Myc overexpression or p53 knock-out did not accelerate tumor formation, and in fact delayed lymphomagenesis in the p53 knock-out model. Conclusions: Our findings strongly suggest that MnSOD does not act as a classical tumor suppressor in hematological tissues. Additionally, the complete loss of MnSOD may actually protect from tumor development by the creation of an unfavorable redox environment for tumor progression. In summary, these results in combination with our previous work suggest that MnSOD needs to be tightly regulated for proper cellular homeostasis, and altering the activity in either direction may lead to cellular dysfunction, oncogenesis, or death.

Original languageEnglish (US)
Pages (from-to)220-223
Number of pages4
JournalRedox Biology
Volume2
Issue number1
DOIs
StatePublished - Jan 13 2014

Fingerprint

Superoxide Dismutase
Tumors
Neoplasms
Knockout Mice
Tissue
Antioxidants
Lymphocytes
Pathology
Hematopoietic Stem Cells
Stem cells
Oxidation-Reduction
Lymphoma
Skin
Carcinogenesis
Homeostasis
B-Lymphocytes

Keywords

  • Anti-oxidant
  • Cancer
  • Oxidative stress
  • Pro-oxidant
  • Redox

ASJC Scopus subject areas

  • Organic Chemistry
  • Clinical Biochemistry

Cite this

Absence of manganese superoxide dismutase delays p53-induced tumor formation. / Case, Adam J.; Domann, Frederick E.

In: Redox Biology, Vol. 2, No. 1, 13.01.2014, p. 220-223.

Research output: Contribution to journalArticle

Case, Adam J. ; Domann, Frederick E. / Absence of manganese superoxide dismutase delays p53-induced tumor formation. In: Redox Biology. 2014 ; Vol. 2, No. 1. pp. 220-223.
@article{2eb2f6c4b5ef4b428c73189d8fa717fc,
title = "Absence of manganese superoxide dismutase delays p53-induced tumor formation",
abstract = "Background: Manganese superoxide dismutase (MnSOD) is a mitochondrial antioxidant enzyme that is down-regulated in a majority of cancers. Due to this observation, as well as MnSOD's potent antioxidant enzymatic activity, MnSOD has been suggested as a tumor suppressor for over 30 years. However, testing this postulate has proven difficult due to the early post-natal lethality of the MnSOD constitutive knock-out mouse. We have previously used a conditional tissue-specific MnSOD knock-out mouse to study the effects of MnSOD loss on the development of various cell types, but long-term cancer development studies have not been performed. We hypothesized the complete loss of MnSOD would significantly increase the rate of tumor formation in a tissue-specific manner. Results: Utilizing a hematopoietic stem cell specific Cre-recombinase mouse model, we created pan-hematopoietic cell MnSOD knock-out mice. Additionally, we combined this MnSOD knock-out with two well established models of lymphoma development: B-lymphocyte specific Myc over-expression and conditional pan-hematopoietic cell p53 knock-out. Mice were allowed to age unchallenged until illness or death had occurred. Contrary to our initial hypothesis, the loss of MnSOD alone was insufficient in causing an increase in tumor formation, but did cause significant life-shortening skin pathology in a strain-dependent manner. Moreover, the loss of MnSOD in conjunction with either Myc overexpression or p53 knock-out did not accelerate tumor formation, and in fact delayed lymphomagenesis in the p53 knock-out model. Conclusions: Our findings strongly suggest that MnSOD does not act as a classical tumor suppressor in hematological tissues. Additionally, the complete loss of MnSOD may actually protect from tumor development by the creation of an unfavorable redox environment for tumor progression. In summary, these results in combination with our previous work suggest that MnSOD needs to be tightly regulated for proper cellular homeostasis, and altering the activity in either direction may lead to cellular dysfunction, oncogenesis, or death.",
keywords = "Anti-oxidant, Cancer, Oxidative stress, Pro-oxidant, Redox",
author = "Case, {Adam J.} and Domann, {Frederick E.}",
year = "2014",
month = "1",
day = "13",
doi = "10.1016/j.redox.2014.01.001",
language = "English (US)",
volume = "2",
pages = "220--223",
journal = "Redox Biology",
issn = "2213-2317",
publisher = "Elsevier BV",
number = "1",

}

TY - JOUR

T1 - Absence of manganese superoxide dismutase delays p53-induced tumor formation

AU - Case, Adam J.

AU - Domann, Frederick E.

PY - 2014/1/13

Y1 - 2014/1/13

N2 - Background: Manganese superoxide dismutase (MnSOD) is a mitochondrial antioxidant enzyme that is down-regulated in a majority of cancers. Due to this observation, as well as MnSOD's potent antioxidant enzymatic activity, MnSOD has been suggested as a tumor suppressor for over 30 years. However, testing this postulate has proven difficult due to the early post-natal lethality of the MnSOD constitutive knock-out mouse. We have previously used a conditional tissue-specific MnSOD knock-out mouse to study the effects of MnSOD loss on the development of various cell types, but long-term cancer development studies have not been performed. We hypothesized the complete loss of MnSOD would significantly increase the rate of tumor formation in a tissue-specific manner. Results: Utilizing a hematopoietic stem cell specific Cre-recombinase mouse model, we created pan-hematopoietic cell MnSOD knock-out mice. Additionally, we combined this MnSOD knock-out with two well established models of lymphoma development: B-lymphocyte specific Myc over-expression and conditional pan-hematopoietic cell p53 knock-out. Mice were allowed to age unchallenged until illness or death had occurred. Contrary to our initial hypothesis, the loss of MnSOD alone was insufficient in causing an increase in tumor formation, but did cause significant life-shortening skin pathology in a strain-dependent manner. Moreover, the loss of MnSOD in conjunction with either Myc overexpression or p53 knock-out did not accelerate tumor formation, and in fact delayed lymphomagenesis in the p53 knock-out model. Conclusions: Our findings strongly suggest that MnSOD does not act as a classical tumor suppressor in hematological tissues. Additionally, the complete loss of MnSOD may actually protect from tumor development by the creation of an unfavorable redox environment for tumor progression. In summary, these results in combination with our previous work suggest that MnSOD needs to be tightly regulated for proper cellular homeostasis, and altering the activity in either direction may lead to cellular dysfunction, oncogenesis, or death.

AB - Background: Manganese superoxide dismutase (MnSOD) is a mitochondrial antioxidant enzyme that is down-regulated in a majority of cancers. Due to this observation, as well as MnSOD's potent antioxidant enzymatic activity, MnSOD has been suggested as a tumor suppressor for over 30 years. However, testing this postulate has proven difficult due to the early post-natal lethality of the MnSOD constitutive knock-out mouse. We have previously used a conditional tissue-specific MnSOD knock-out mouse to study the effects of MnSOD loss on the development of various cell types, but long-term cancer development studies have not been performed. We hypothesized the complete loss of MnSOD would significantly increase the rate of tumor formation in a tissue-specific manner. Results: Utilizing a hematopoietic stem cell specific Cre-recombinase mouse model, we created pan-hematopoietic cell MnSOD knock-out mice. Additionally, we combined this MnSOD knock-out with two well established models of lymphoma development: B-lymphocyte specific Myc over-expression and conditional pan-hematopoietic cell p53 knock-out. Mice were allowed to age unchallenged until illness or death had occurred. Contrary to our initial hypothesis, the loss of MnSOD alone was insufficient in causing an increase in tumor formation, but did cause significant life-shortening skin pathology in a strain-dependent manner. Moreover, the loss of MnSOD in conjunction with either Myc overexpression or p53 knock-out did not accelerate tumor formation, and in fact delayed lymphomagenesis in the p53 knock-out model. Conclusions: Our findings strongly suggest that MnSOD does not act as a classical tumor suppressor in hematological tissues. Additionally, the complete loss of MnSOD may actually protect from tumor development by the creation of an unfavorable redox environment for tumor progression. In summary, these results in combination with our previous work suggest that MnSOD needs to be tightly regulated for proper cellular homeostasis, and altering the activity in either direction may lead to cellular dysfunction, oncogenesis, or death.

KW - Anti-oxidant

KW - Cancer

KW - Oxidative stress

KW - Pro-oxidant

KW - Redox

UR - http://www.scopus.com/inward/record.url?scp=84893206407&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893206407&partnerID=8YFLogxK

U2 - 10.1016/j.redox.2014.01.001

DO - 10.1016/j.redox.2014.01.001

M3 - Article

C2 - 24494196

AN - SCOPUS:84893206407

VL - 2

SP - 220

EP - 223

JO - Redox Biology

JF - Redox Biology

SN - 2213-2317

IS - 1

ER -