A novel function prediction approach using protein overlap networks

Shide Liang, Dandan Zheng, Daron M. Standley, Huarong Guo, Chi Zhang

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Background: Construction of a reliable network remains the bottleneck for network-based protein function prediction. We built an artificial network model called protein overlap network (PON) for the entire genome of yeast, fly, worm, and human, respectively. Each node of the network represents a protein, and two proteins are connected if they share a domain according to InterPro database.Results: The function of a protein can be predicted by counting the occurrence frequency of GO (gene ontology) terms associated with domains of direct neighbors. The average success rate and coverage were 34.3% and 43.9%, respectively, for the test genomes, and were increased to 37.9% and 51.3% when a composite PON of the four species was used for the prediction. As a comparison, the success rate was 7.0% in the random control procedure. We also made predictions with GO term annotations of the second layer nodes using the composite network and obtained an impressive success rate (>30%) and coverage (>30%), even for small genomes. Further improvement was achieved by statistical analysis of manually annotated GO terms for each neighboring protein.Conclusions: The PONs are composed of dense modules accompanied by a few long distance connections. Based on the PONs, we developed multiple approaches effective for protein function prediction.

Original languageEnglish (US)
Article number61
JournalBMC systems biology
Volume7
DOIs
Publication statusPublished - Jul 17 2013

    Fingerprint

Keywords

  • Composite network
  • Functional genomics
  • Protein function prediction
  • Protein overlap network

ASJC Scopus subject areas

  • Structural Biology
  • Modeling and Simulation
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Cite this