A myocyte enhancer factor 2 (MEF2) site located in a hypersensitive region of the FGF16 gene locus is required for preferential promoter activity in neonatal cardiac myocytes

Alina G. Sofronescu, Yan Jin, Peter A. Cattini

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Fibroblast growth factor 16 (FGF16) is preferentially expressed in the heart after birth, suggesting its regulation is associated with tissue-specific chromatin remodeling and DNA-protein interactions. Here we have mapped the transcription initiation site of murine FGF16 to approximately 1.1 kilobases (kb) upstream of the translation start codon (ATG). Hybrid reporter genes directed by about 4.7 kb of upstream FGF16 DNA were expressed specifically in transfected neonatal rat cardiac myocytes, as well as in the heart of transgenic mice. A DNaseI hypersensitive site was mapped to a region about 1.2 kb upstream of the transcription initiation site in heart but not kidney tissue, and a nuclease protection assay gave evidence of a cardiac-specific protein-DNA interaction in this region. Deletion analysis indicated that a hybrid gene with 1205 bp but not 1054 bp of upstream DNA directed FGF16 promoter activity in transfected neonatal rat cardiac myocytes. We identified a putative myocyte enhancer factor 2 (MEF2)-binding site at nucleotides -1159/-1148, confirmed by electrophoretic mobility shift assay and MEF2 antibody binding. Mutation of the MEF2 site resulted in a blunting of FGF16 promoter activity in transfected neonatal rat cardiac myocytes. These data suggest that chromatin remodeling and MEF2 binding in the FGF16 promoter contribute to expression in the postnatal heart.

Original languageEnglish (US)
Pages (from-to)173-182
Number of pages10
JournalDNA and Cell Biology
Volume27
Issue number4
DOIs
StatePublished - Apr 1 2008

Fingerprint

MEF2 Transcription Factors
Fibroblast Growth Factors
Cardiac Myocytes
Genes
Chromatin Assembly and Disassembly
Transcription Initiation Site
DNA
Nuclease Protection Assays
Initiator Codon
Electrophoretic Mobility Shift Assay
Reporter Genes
Transgenic Mice
Proteins
Nucleotides
Binding Sites
Parturition
Kidney
Mutation
Antibodies

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

@article{afa0c25206ce4e5e94f94386d5ac94fe,
title = "A myocyte enhancer factor 2 (MEF2) site located in a hypersensitive region of the FGF16 gene locus is required for preferential promoter activity in neonatal cardiac myocytes",
abstract = "Fibroblast growth factor 16 (FGF16) is preferentially expressed in the heart after birth, suggesting its regulation is associated with tissue-specific chromatin remodeling and DNA-protein interactions. Here we have mapped the transcription initiation site of murine FGF16 to approximately 1.1 kilobases (kb) upstream of the translation start codon (ATG). Hybrid reporter genes directed by about 4.7 kb of upstream FGF16 DNA were expressed specifically in transfected neonatal rat cardiac myocytes, as well as in the heart of transgenic mice. A DNaseI hypersensitive site was mapped to a region about 1.2 kb upstream of the transcription initiation site in heart but not kidney tissue, and a nuclease protection assay gave evidence of a cardiac-specific protein-DNA interaction in this region. Deletion analysis indicated that a hybrid gene with 1205 bp but not 1054 bp of upstream DNA directed FGF16 promoter activity in transfected neonatal rat cardiac myocytes. We identified a putative myocyte enhancer factor 2 (MEF2)-binding site at nucleotides -1159/-1148, confirmed by electrophoretic mobility shift assay and MEF2 antibody binding. Mutation of the MEF2 site resulted in a blunting of FGF16 promoter activity in transfected neonatal rat cardiac myocytes. These data suggest that chromatin remodeling and MEF2 binding in the FGF16 promoter contribute to expression in the postnatal heart.",
author = "Sofronescu, {Alina G.} and Yan Jin and Cattini, {Peter A.}",
year = "2008",
month = "4",
day = "1",
doi = "10.1089/dna.2007.0689",
language = "English (US)",
volume = "27",
pages = "173--182",
journal = "DNA and Cell Biology",
issn = "1044-5498",
publisher = "Mary Ann Liebert Inc.",
number = "4",

}

TY - JOUR

T1 - A myocyte enhancer factor 2 (MEF2) site located in a hypersensitive region of the FGF16 gene locus is required for preferential promoter activity in neonatal cardiac myocytes

AU - Sofronescu, Alina G.

AU - Jin, Yan

AU - Cattini, Peter A.

PY - 2008/4/1

Y1 - 2008/4/1

N2 - Fibroblast growth factor 16 (FGF16) is preferentially expressed in the heart after birth, suggesting its regulation is associated with tissue-specific chromatin remodeling and DNA-protein interactions. Here we have mapped the transcription initiation site of murine FGF16 to approximately 1.1 kilobases (kb) upstream of the translation start codon (ATG). Hybrid reporter genes directed by about 4.7 kb of upstream FGF16 DNA were expressed specifically in transfected neonatal rat cardiac myocytes, as well as in the heart of transgenic mice. A DNaseI hypersensitive site was mapped to a region about 1.2 kb upstream of the transcription initiation site in heart but not kidney tissue, and a nuclease protection assay gave evidence of a cardiac-specific protein-DNA interaction in this region. Deletion analysis indicated that a hybrid gene with 1205 bp but not 1054 bp of upstream DNA directed FGF16 promoter activity in transfected neonatal rat cardiac myocytes. We identified a putative myocyte enhancer factor 2 (MEF2)-binding site at nucleotides -1159/-1148, confirmed by electrophoretic mobility shift assay and MEF2 antibody binding. Mutation of the MEF2 site resulted in a blunting of FGF16 promoter activity in transfected neonatal rat cardiac myocytes. These data suggest that chromatin remodeling and MEF2 binding in the FGF16 promoter contribute to expression in the postnatal heart.

AB - Fibroblast growth factor 16 (FGF16) is preferentially expressed in the heart after birth, suggesting its regulation is associated with tissue-specific chromatin remodeling and DNA-protein interactions. Here we have mapped the transcription initiation site of murine FGF16 to approximately 1.1 kilobases (kb) upstream of the translation start codon (ATG). Hybrid reporter genes directed by about 4.7 kb of upstream FGF16 DNA were expressed specifically in transfected neonatal rat cardiac myocytes, as well as in the heart of transgenic mice. A DNaseI hypersensitive site was mapped to a region about 1.2 kb upstream of the transcription initiation site in heart but not kidney tissue, and a nuclease protection assay gave evidence of a cardiac-specific protein-DNA interaction in this region. Deletion analysis indicated that a hybrid gene with 1205 bp but not 1054 bp of upstream DNA directed FGF16 promoter activity in transfected neonatal rat cardiac myocytes. We identified a putative myocyte enhancer factor 2 (MEF2)-binding site at nucleotides -1159/-1148, confirmed by electrophoretic mobility shift assay and MEF2 antibody binding. Mutation of the MEF2 site resulted in a blunting of FGF16 promoter activity in transfected neonatal rat cardiac myocytes. These data suggest that chromatin remodeling and MEF2 binding in the FGF16 promoter contribute to expression in the postnatal heart.

UR - http://www.scopus.com/inward/record.url?scp=42149182413&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=42149182413&partnerID=8YFLogxK

U2 - 10.1089/dna.2007.0689

DO - 10.1089/dna.2007.0689

M3 - Article

C2 - 18260768

AN - SCOPUS:42149182413

VL - 27

SP - 173

EP - 182

JO - DNA and Cell Biology

JF - DNA and Cell Biology

SN - 1044-5498

IS - 4

ER -